These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 23669672)

  • 41. Improving the performance of a pyramid wavefront sensor with modal sensitivity compensation.
    Korkiakoski V; Vérinaud C; Le Louarn M
    Appl Opt; 2008 Jan; 47(1):79-87. PubMed ID: 18157280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reference-free Shack-Hartmann wavefront sensor.
    Zhao L; Guo W; Li X; Chen IM
    Opt Lett; 2011 Aug; 36(15):2752-4. PubMed ID: 21808301
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Daytime HyWFS approach for daylight adaptive optics wavefront sensing.
    Huang L; Yao K; Chen L; Wang J; Liu Y
    Opt Express; 2024 Feb; 32(4):5996-6010. PubMed ID: 38439313
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A laser guide star wavefront sensor bench demonstrator for TMT.
    Lardiere O; Conan R; Bradley C; Jackson K; Herriot G
    Opt Express; 2008 Apr; 16(8):5527-43. PubMed ID: 18542656
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Correction of non-common path aberrations in pyramid wavefront sensors to recover the optimal magnitude gain using a deformable lens.
    Quintavalla M; Bergomi M; Magrin D; Bonora S; Ragazzoni R
    Appl Opt; 2020 Jun; 59(17):5151-5157. PubMed ID: 32543534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Efficient reconstruction method for ground layer adaptive optics with mixed natural and laser guide stars.
    Wagner R; Helin T; Obereder A; Ramlau R
    Appl Opt; 2016 Feb; 55(6):1421-9. PubMed ID: 26906596
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Study of a MEMS-based Shack-Hartmann wavefront sensor with adjustable pupil sampling for astronomical adaptive optics.
    Baranec C; Dekany R
    Appl Opt; 2008 Oct; 47(28):5155-62. PubMed ID: 18830305
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wavefront reconstruction of a Shack-Hartmann sensor with insufficient lenslets based on an extreme learning machine.
    Xu Z; Wang S; Zhao M; Zhao W; Dong L; He X; Yang P; Xu B
    Appl Opt; 2020 Jun; 59(16):4768-4774. PubMed ID: 32543468
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Calibration and testing with real turbulence of a pyramid sensor employing static modulation.
    LeDue J; Jolissaint L; Véran JP; Bradley C
    Opt Express; 2009 Apr; 17(9):7186-95. PubMed ID: 19399094
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-resolution retinal imaging with micro adaptive optics system.
    Niu S; Shen J; Liang C; Zhang Y; Li B
    Appl Opt; 2011 Aug; 50(22):4365-75. PubMed ID: 21833112
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Phase retrieval using a modified Shack-Hartmann wavefront sensor with defocus.
    Li C; Li B; Zhang S
    Appl Opt; 2014 Feb; 53(4):618-24. PubMed ID: 24514178
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving centroiding by super-resolution reconstruction of sodium layer density in Shack-Hartmann wavefront sensors.
    Mello AJ; Pipa DR
    Appl Opt; 2016 May; 55(14):3701-10. PubMed ID: 27168279
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nonlinear wavefront reconstruction with convolutional neural networks for Fourier-based wavefront sensors.
    Landman R; Haffert SY
    Opt Express; 2020 May; 28(11):16644-16657. PubMed ID: 32549483
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Scintillation and phase anisoplanatism in Shack-Hartmann wavefront sensing.
    Robert C; Conan JM; Michau V; Fusco T; Vedrenne N
    J Opt Soc Am A Opt Image Sci Vis; 2006 Mar; 23(3):613-24. PubMed ID: 16539058
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.
    Marino J; Wöger F
    Appl Opt; 2014 Feb; 53(4):685-93. PubMed ID: 24514185
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High precision wavefront correction using an influence function optimization method based on a hybrid adaptive optics system.
    Zheng Y; Sun C; Dai W; Zeng F; Xue Q; Wang D; Zhao W; Huang L
    Opt Express; 2019 Nov; 27(24):34937-34951. PubMed ID: 31878672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of wavefront sensor models for simulation of adaptive optics.
    Wu Z; Enmark A; Owner-Petersen M; Andersen T
    Opt Express; 2009 Oct; 17(22):20575-83. PubMed ID: 19997286
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Changes in aberrations and retinal image quality due to tear film dynamics.
    Li KY; Yoon G
    Opt Express; 2006 Dec; 14(25):12552-9. PubMed ID: 19529690
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tomographic wavefront error using multi-LGS constellation sensed with Shack-Hartmann wavefront sensors.
    Robert C; Conan JM; Gratadour D; Schreiber L; Fusco T
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A201-15. PubMed ID: 21045881
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nonlinear spline wavefront reconstruction through moment-based Shack-Hartmann sensor measurements.
    Viegers M; Brunner E; Soloviev O; de Visser CC; Verhaegen M
    Opt Express; 2017 May; 25(10):11514-11529. PubMed ID: 28788716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.