These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 23669745)
1. The MOSS Physcomitrella patens reproductive organ development is highly organized, affected by the two SHI/STY genes and by the level of active auxin in the SHI/STY expression domain. Landberg K; Pederson ER; Viaene T; Bozorg B; Friml J; Jönsson H; Thelander M; Sundberg E Plant Physiol; 2013 Jul; 162(3):1406-19. PubMed ID: 23669745 [TBL] [Abstract][Full Text] [Related]
2. Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Eklund DM; Thelander M; Landberg K; Ståldal V; Nilsson A; Johansson M; Valsecchi I; Pederson ER; Kowalczyk M; Ljung K; Ronne H; Sundberg E Development; 2010 Apr; 137(8):1275-84. PubMed ID: 20223761 [TBL] [Abstract][Full Text] [Related]
3. Use of an inducible reporter gene system for the analysis of auxin distribution in the moss Physcomitrella patens. Bierfreund NM; Reski R; Decker EL Plant Cell Rep; 2003 Aug; 21(12):1143-52. PubMed ID: 12789498 [TBL] [Abstract][Full Text] [Related]
5. Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1and PpRSL2 in Physcomitrella patens. Jang G; Dolan L New Phytol; 2011 Oct; 192(2):319-27. PubMed ID: 21707622 [TBL] [Abstract][Full Text] [Related]
6. Knockout of GH3 genes in the moss Physcomitrella patens leads to increased IAA levels at elevated temperature and in darkness. Mittag J; Gabrielyan A; Ludwig-Müller J Plant Physiol Biochem; 2015 Dec; 97():339-49. PubMed ID: 26520677 [TBL] [Abstract][Full Text] [Related]
7. Physcomitrella patens auxin conjugate synthetase (GH3) double knockout mutants are more resistant to Pythium infection than wild type. Mittag J; Šola I; Rusak G; Ludwig-Müller J J Plant Physiol; 2015 Jul; 183():75-83. PubMed ID: 26102574 [TBL] [Abstract][Full Text] [Related]
8. Studies of moss reproductive development indicate that auxin biosynthesis in apical stem cells may constitute an ancestral function for focal growth control. Landberg K; Šimura J; Ljung K; Sundberg E; Thelander M New Phytol; 2021 Jan; 229(2):845-860. PubMed ID: 32901452 [TBL] [Abstract][Full Text] [Related]
9. The plant specific SHORT INTERNODES/STYLISH (SHI/STY) proteins: Structure and functions. Fang D; Zhang W; Ye Z; Hu F; Cheng X; Cao J Plant Physiol Biochem; 2023 Jan; 194():685-695. PubMed ID: 36565613 [TBL] [Abstract][Full Text] [Related]
10. Regulatory Mechanism of ABA and ABI3 on Vegetative Development in the Moss Zhao M; Li Q; Chen Z; Lv Q; Bao F; Wang X; He Y Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213069 [TBL] [Abstract][Full Text] [Related]
11. Convergent evolution of shoots in land plants: lack of auxin polar transport in moss shoots. Fujita T; Sakaguchi H; Hiwatashi Y; Wagstaff SJ; Ito M; Deguchi H; Sato T; Hasebe M Evol Dev; 2008; 10(2):176-86. PubMed ID: 18315811 [TBL] [Abstract][Full Text] [Related]
12. Genes encoding lipid II flippase MurJ and peptidoglycan hydrolases are required for chloroplast division in the moss Physcomitrella patens. Utsunomiya H; Saiki N; Kadoguchi H; Fukudome M; Hashimoto S; Ueda M; Takechi K; Takano H Plant Mol Biol; 2021 Nov; 107(4-5):405-415. PubMed ID: 33078277 [TBL] [Abstract][Full Text] [Related]
13. Minimal auxin sensing levels in vegetative moss stem cells revealed by a ratiometric reporter. Thelander M; Landberg K; Sundberg E New Phytol; 2019 Oct; 224(2):775-788. PubMed ID: 31318450 [TBL] [Abstract][Full Text] [Related]
14. RSL genes are sufficient for rhizoid system development in early diverging land plants. Jang G; Yi K; Pires ND; Menand B; Dolan L Development; 2011 Jun; 138(11):2273-81. PubMed ID: 21558375 [TBL] [Abstract][Full Text] [Related]
15. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Imaizumi T; Kadota A; Hasebe M; Wada M Plant Cell; 2002 Feb; 14(2):373-86. PubMed ID: 11884681 [TBL] [Abstract][Full Text] [Related]
16. VAPYRIN-like is required for development of the moss Rathgeb U; Chen M; Buron F; Feddermann N; Schorderet M; Raisin A; Häberli GY; Marc-Martin S; Keller J; Delaux PM; Schaefer DG; Reinhardt D Development; 2020 May; 147(11):. PubMed ID: 32376679 [TBL] [Abstract][Full Text] [Related]
17. The evolution of nuclear auxin signalling. Paponov IA; Teale W; Lang D; Paponov M; Reski R; Rensing SA; Palme K BMC Evol Biol; 2009 Jun; 9():126. PubMed ID: 19493348 [TBL] [Abstract][Full Text] [Related]
18. Regulation of the Development in Physcomitrium (Physcomitrella) patens implicates the functional differentiation of plant RNase H1s. Chen S; Dong X; Yang Z; Hou X; Liu L Plant Sci; 2021 Dec; 313():111070. PubMed ID: 34763863 [TBL] [Abstract][Full Text] [Related]
19. Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development. Navarro C; Efremova N; Golz JF; Rubiera R; Kuckenberg M; Castillo R; Tietz O; Saedler H; Schwarz-Sommer Z Development; 2004 Aug; 131(15):3649-59. PubMed ID: 15229173 [TBL] [Abstract][Full Text] [Related]
20. The cyclophilin DIAGEOTROPICA has a conserved role in auxin signaling. Lavy M; Prigge MJ; Tigyi K; Estelle M Development; 2012 Mar; 139(6):1115-24. PubMed ID: 22318226 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]