These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 23669790)

  • 21. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde.
    Nie L; Yu J; Li X; Cheng B; Liu G; Jaroniec M
    Environ Sci Technol; 2013 Mar; 47(6):2777-83. PubMed ID: 23438899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of heavy metals during incineration using activated carbon fibers.
    Liu ZS
    J Hazard Mater; 2007 Apr; 142(1-2):506-11. PubMed ID: 17011121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Catalytic performance of nanosized Pt-Au alloy catalyst in oxidation of methanol and toluene.
    Kim KJ; Kim YH; Ahn HG
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3795-9. PubMed ID: 18047061
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and performance of Pt-Pd-Rh cordierite monolith catalyst for selectivity catalytic oxidation of ammonia.
    Hung CM
    J Hazard Mater; 2010 Aug; 180(1-3):561-5. PubMed ID: 20451319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic removal of harmful volatile organic compounds by reutilizing zinc rods waste from spent batteries as a palladium catalyst support.
    Kim SC; Kim BS
    Environ Pollut; 2023 Dec; 338():122678. PubMed ID: 37804904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Removal of SO2 from O2-containing flue gas by activated carbon fiber (ACF) impregnated with NH3.
    Xu L; Guo J; Jin F; Zeng H
    Chemosphere; 2006 Feb; 62(5):823-6. PubMed ID: 15982716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method.
    An N; Yu Q; Liu G; Li S; Jia M; Zhang W
    J Hazard Mater; 2011 Feb; 186(2-3):1392-7. PubMed ID: 21211900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.
    Alvarez-Merino MA; Ribeiro MF; Silva JM; Carrasco-Marín F; Maldonado-Hódar FJ
    Environ Sci Technol; 2004 Sep; 38(17):4664-70. PubMed ID: 15461177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recycling of a spent iron based catalyst for the complete oxidation of toluene: effect of palladium.
    Kim SC; Nah JW
    Environ Technol; 2015; 36(1-4):208-13. PubMed ID: 25413115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilisation.
    Dimitratos N; Lopez-Sanchez JA; Morgan D; Carley AF; Tiruvalam R; Kiely CJ; Bethell D; Hutchings GJ
    Phys Chem Chem Phys; 2009 Jul; 11(25):5142-53. PubMed ID: 19562147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Property and performance of red mud-based catalysts for the complete oxidation of volatile organic compounds.
    Kim SC; Nahm SW; Park YK
    J Hazard Mater; 2015 Dec; 300():104-113. PubMed ID: 26163485
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of physicochemical treatments on spent palladium based catalyst for catalytic oxidation of VOCs.
    Kim SC; Nahm SW; Shim WG; Lee JW; Moon H
    J Hazard Mater; 2007 Mar; 141(1):305-14. PubMed ID: 16919389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties and performance of silver-based catalysts on the catalytic oxidation of toluene.
    Kim SC; Ryu JY
    Environ Technol; 2011 Apr; 32(5-6):561-8. PubMed ID: 21877537
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Noble metal ionic sites for catalytic hydrogen combustion: spectroscopic insights.
    Deshpande PA; Madras G
    Phys Chem Chem Phys; 2011 Jan; 13(2):708-18. PubMed ID: 21060910
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction.
    Lim B; Jiang M; Camargo PH; Cho EC; Tao J; Lu X; Zhu Y; Xia Y
    Science; 2009 Jun; 324(5932):1302-5. PubMed ID: 19443738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs).
    Hsi HC; Rood MJ; Rostam-Abadi M; Chen S; Chang R
    Environ Sci Technol; 2001 Jul; 35(13):2785-91. PubMed ID: 11452610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ammonia removal of activated carbon fibers produced by oxyfluorination.
    Park SJ; Kim BJ
    J Colloid Interface Sci; 2005 Nov; 291(2):597-9. PubMed ID: 15975585
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced Adsorption of Gaseous Naphthalene by Activated Carbon Fibers at Elevated Temperatures.
    Lin CL; Huang CY; Liu ZS
    Toxics; 2024 Jul; 12(8):. PubMed ID: 39195639
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and characteristics of carbon-supported platinum catalyst and its application in the removal of phenolic pollutants in aqueous solution by microwave-assisted catalytic oxidation.
    Bo L; Quan X; Wang X; Chen S
    J Hazard Mater; 2008 Aug; 157(1):179-86. PubMed ID: 18280039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-step synthesis of carbon-supported Pd@Pt/C core-shell nanoparticles as oxygen reduction electrocatalysts and their enhanced activity and stability.
    Lim Y; Kim SK; Lee SC; Choi J; Nahm KS; Yoo SJ; Kim P
    Nanoscale; 2014 Apr; 6(8):4038-42. PubMed ID: 24526350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.