These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23669862)

  • 21. Chemical modification of graphene aerogels for electrochemical capacitor applications.
    Hong JY; Wie JJ; Xu Y; Park HS
    Phys Chem Chem Phys; 2015 Dec; 17(46):30946-62. PubMed ID: 26536234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity.
    Huang H; Chen P; Zhang X; Lu Y; Zhan W
    Small; 2013 Apr; 9(8):1397-404. PubMed ID: 23512583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-pot self-assembled three-dimensional TiO2-graphene hydrogel with improved adsorption capacities and photocatalytic and electrochemical activities.
    Zhang Z; Xiao F; Guo Y; Wang S; Liu Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2227-33. PubMed ID: 23429833
    [TBL] [Abstract][Full Text] [Related]  

  • 24. P25-graphene hydrogels: room-temperature synthesis and application for removal of methylene blue from aqueous solution.
    Hou C; Zhang Q; Li Y; Wang H
    J Hazard Mater; 2012 Feb; 205-206():229-35. PubMed ID: 22264584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Alginate-based aerogels with double catalytic activity sites and high mechanical strength.
    Hou Y; Zhong X; Ding Y; Zhang S; Shi F; Hu J
    Carbohydr Polym; 2020 Oct; 245():116490. PubMed ID: 32718607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Green synthesis of oriented xanthan gum-graphene oxide hybrid aerogels for water purification.
    Liu S; Yao F; Oderinde O; Zhang Z; Fu G
    Carbohydr Polym; 2017 Oct; 174():392-399. PubMed ID: 28821084
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shape-Memory and Anisotropic Carbon Aerogel from Biomass and Graphene Oxide.
    Lin Z; Jiang W; Chen Z; Zhong L; Liu C
    Molecules; 2021 Sep; 26(18):. PubMed ID: 34577185
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions.
    Li J; Lu Y; Yang D; Sun Q; Liu Y; Zhao H
    Biomacromolecules; 2011 May; 12(5):1860-7. PubMed ID: 21425864
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanically Robust and Elastic Graphene/Aramid Nanofiber/Polyaniline Nanotube Aerogels for Pressure Sensors.
    Zou Y; Chen Z; Guo X; Peng Z; Yu C; Zhong W
    ACS Appl Mater Interfaces; 2022 Apr; 14(15):17858-17868. PubMed ID: 35390255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of nitrogen-doped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide.
    Long D; Li W; Ling L; Miyawaki J; Mochida I; Yoon SH
    Langmuir; 2010 Oct; 26(20):16096-102. PubMed ID: 20863088
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultralight Multifunctional Carbon-Based Aerogels by Combining Graphene Oxide and Bacterial Cellulose.
    Li C; Wu ZY; Liang HW; Chen JF; Yu SH
    Small; 2017 Jul; 13(25):. PubMed ID: 28508512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A hierarchically structured graphene foam and its potential as a large-scale strain-gauge sensor.
    Kuang J; Liu L; Gao Y; Zhou D; Chen Z; Han B; Zhang Z
    Nanoscale; 2013 Dec; 5(24):12171-7. PubMed ID: 24142261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Naturally Dried Graphene-Based Nanocomposite Aerogels with Exceptional Elasticity and High Electrical Conductivity.
    Zhang Y; Zhang L; Zhang G; Li H
    ACS Appl Mater Interfaces; 2018 Jun; 10(25):21565-21572. PubMed ID: 29864278
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Effects of Hydrophobicity and Textural Properties on Hexamethyldisiloxane Adsorption in Reduced Graphene Oxide Aerogels.
    Hou X; Zheng Y; Ma X; Liu Y; Ma Z
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33672689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-area superelastic graphene aerogels based on a room-temperature reduction self-assembly strategy for sensing and particulate matter (PM
    Yan S; Zhang G; Li F; Zhang L; Wang S; Zhao H; Ge Q; Li H
    Nanoscale; 2019 May; 11(21):10372-10380. PubMed ID: 31107474
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategy of Constructing Light-Weight and Highly Compressible Graphene-Based Aerogels with an Ordered Unique Configuration for Wearable Piezoresistive Sensors.
    He X; Liu Q; Zhong W; Chen J; Sun D; Jiang H; Liu K; Wang W; Wang Y; Lu Z; Li M; Liu X; Wang X; Sun G; Wang D
    ACS Appl Mater Interfaces; 2019 May; 11(21):19350-19362. PubMed ID: 31056902
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomimetic Architectured Graphene Aerogel with Exceptional Strength and Resilience.
    Yang M; Zhao N; Cui Y; Gao W; Zhao Q; Gao C; Bai H; Xie T
    ACS Nano; 2017 Jul; 11(7):6817-6824. PubMed ID: 28636356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification.
    Lee B; Lee S; Lee M; Jeong DH; Baek Y; Yoon J; Kim YH
    Nanoscale; 2015 Apr; 7(15):6782-9. PubMed ID: 25807182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The construction of bio-inspired hierarchically porous graphene aerogel for efficiently organic pollutants absorption.
    Qin Y; Xue C; Yu H; Wen Y; Zhang L; Li Y
    J Hazard Mater; 2021 Oct; 419():126441. PubMed ID: 34175706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene confinement effects on melting/freezing point and structure and dynamics behavior of water.
    Foroutan M; Fatemi SM; Shokouh F
    J Mol Graph Model; 2016 May; 66():85-90. PubMed ID: 27041448
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.