These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 23670002)

  • 1. Lasing characteristic of organic octagonal quasicrystal slabs with single-defect microcavity at low-index contrast.
    Yang G; Chen X; Wang Y; Feng S
    Opt Express; 2013 May; 21(9):11457-64. PubMed ID: 23670002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvent-free fluidic organic dye lasers.
    Choi EY; Mager L; Cham TT; Dorkenoo KD; Fort A; Wu JW; Barsella A; Ribierre JC
    Opt Express; 2013 May; 21(9):11368-75. PubMed ID: 23669993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lasing behavior modulation for ZnO whispering-gallery microcavities.
    Zhu G; Xu C; Cai L; Li J; Shi Z; Lin Y; Chen G; Ding T; Tian Z; Dai J
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6195-201. PubMed ID: 23078028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Octagonal Quasicrystal Defect Mode Laser-Based PVK: Ir(ppy)
    Cai Y; Zhang S; Wu C; Wang Z; Xu W; Chen X; Wang Y
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low threshold optically pumped lasing from MEH-PPV quasi-periodic photonic crystal microcavity.
    Cai Y; Jiao X; Chen X; Wang X; Feng S; Wang Z; Wang Y
    Appl Opt; 2019 Jun; 58(18):4853-4857. PubMed ID: 31503800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-threshold, single-mode, and linearly polarized lasing from all organic quasicrystal microcavity.
    Liu Z; Chen R; Liu Y; Zhang X; Sun X; Huang W; Luo D
    Opt Express; 2017 Sep; 25(18):21519-21525. PubMed ID: 29041449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarization characteristics of Whispering-Gallery-Mode fiber lasers based on evanescent-wave-coupled gain.
    Zhang YX; Pu XY; Feng L; Han DY; Ren YT
    Opt Express; 2013 May; 21(10):12617-28. PubMed ID: 23736481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photonic-crystal microcavity laser with site-controlled quantum-wire active medium.
    Atlasov KA; Calic M; Karlsson KF; Gallo P; Rudra A; Dwir B; Kapon E
    Opt Express; 2009 Sep; 17(20):18178-83. PubMed ID: 19907608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrum control by anisotropy in a cylindrical microcavity.
    Kang XL; Li YP; Qiu SL; Cai JX
    Opt Express; 2009 Dec; 17(26):23843-50. PubMed ID: 20052094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-stable source of polarization-entangled photons in a linear double-pass configuration.
    Steinlechner F; Ramelow S; Jofre M; Gilaberte M; Jennewein T; Torres JP; Mitchell MW; Pruneri V
    Opt Express; 2013 May; 21(10):11943-51. PubMed ID: 23736416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal design of a microcavity organic laser device under electrical pumping.
    Chakaroun M; Coens A; Fabre N; Gourdon F; Solard J; Fischer A; Boudrioua A; Lee CC
    Opt Express; 2011 Jan; 19(2):493-505. PubMed ID: 21263589
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lasing through a strongly-coupled mode by intra-cavity pumping.
    Akselrod GM; Young ER; Bradley MS; Bulović V
    Opt Express; 2013 May; 21(10):12122-8. PubMed ID: 23736432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser-written waveguides in KTP for broadband Type II second harmonic generation.
    Laurell F; Calmano T; Müller S; Zeil P; Canalias C; Huber G
    Opt Express; 2012 Sep; 20(20):22308-13. PubMed ID: 23037379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcavity effects and optically pumped lasing in single conjugated polymer nanowires.
    O'Carroll D; Lieberwirth I; Redmond G
    Nat Nanotechnol; 2007 Mar; 2(3):180-4. PubMed ID: 18654250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuously tunable solution-processed organic semiconductor DFB lasers pumped by laser diode.
    Klinkhammer S; Liu X; Huska K; Shen Y; Vanderheiden S; Valouch S; Vannahme C; Bräse S; Mappes T; Lemmer U
    Opt Express; 2012 Mar; 20(6):6357-64. PubMed ID: 22418517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uniformity of the lasing wavelength of heterogeneously integrated InP microdisk lasers on SOI.
    Mechet P; Raineri F; Bazin A; Halioua Y; Spuesens T; Karle TJ; Regreny P; Monnier P; Van Thourhout D; Sagnes I; Raj R; Roelkens G; Morthier G
    Opt Express; 2013 May; 21(9):10622-31. PubMed ID: 23669918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous wave waveguide lasers of swift argon ion irradiated Nd:YVO4 waveguides.
    Yao Y; Dong N; Chen F; Pang L; Wang Z; Lu Q
    Opt Express; 2011 Nov; 19(24):24252-7. PubMed ID: 22109451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of the properties of micro-structured waveguides in lithium niobate crystal.
    Karakuzu H; Dubov M; Boscolo S
    Opt Express; 2013 Jul; 21(14):17122-30. PubMed ID: 23938560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides.
    Chen J; Li Z; Yue S; Gong Q
    Opt Express; 2009 Dec; 17(26):23603-9. PubMed ID: 20052069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lateral cavity photonic crystal surface emitting laser based on commercial epitaxial wafer.
    Wang Y; Qu H; Zhou W; Qi A; Zhang J; Liu L; Zheng W
    Opt Express; 2013 Apr; 21(7):8844-55. PubMed ID: 23571974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.