These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 23670133)

  • 21. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.
    Zhao C; Yang C
    Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral displacement as a function of particle size using a piecewise curved planar interdigitated electrode array.
    Han KH; Han SI; Frazier AB
    Lab Chip; 2009 Oct; 9(20):2958-64. PubMed ID: 19789750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump.
    Wang PJ; Chang CY; Chang ML
    Biosens Bioelectron; 2004 Jul; 20(1):115-21. PubMed ID: 15142583
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Scaled-Up Inertial Microfluidics: Retention System for Microcarrier-Based Suspension Cultures.
    Moloudi R; Oh S; Yang C; Teo KL; Lam AT; Ebrahimi Warkiani M; Win Naing M
    Biotechnol J; 2019 May; 14(5):e1800674. PubMed ID: 30791214
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electroosmotic flow of non-Newtonian fluids in a constriction microchannel.
    Ko CH; Li D; Malekanfard A; Wang YN; Fu LM; Xuan X
    Electrophoresis; 2019 May; 40(10):1387-1394. PubMed ID: 30346029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.
    Munir A; Zhu Z; Wang J; Zhou HS
    IET Nanobiotechnol; 2014 Jun; 8(2):102-10. PubMed ID: 25014081
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of wall slip on the viscoelastic particle ordering in a microfluidic channel.
    D'Avino G; Maffettone PL
    Electrophoresis; 2022 Nov; 43(21-22):2206-2216. PubMed ID: 35689363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics.
    Yuan D; Zhao Q; Yan S; Tang SY; Zhang Y; Yun G; Nguyen NT; Zhang J; Li M; Li W
    Lab Chip; 2019 Sep; 19(17):2811-2821. PubMed ID: 31312819
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW; Yoo JY
    Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels.
    Liu C; Xue C; Chen X; Shan L; Tian Y; Hu G
    Anal Chem; 2015 Jun; 87(12):6041-8. PubMed ID: 25989347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid.
    Nam J; Namgung B; Lim CT; Bae JE; Leo HL; Cho KS; Kim S
    J Chromatogr A; 2015 Aug; 1406():244-50. PubMed ID: 26122857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous Sampling of Aerosolized Particles Using Stratified Two-Phase Microfluidics.
    Ahasan K; Schnoebelen NJ; Shrotriya P; Kingston TA
    ACS Sens; 2024 Jun; 9(6):2915-2924. PubMed ID: 38848499
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model for Joule heating-induced dispersion in microchip electrophoresis.
    Wang Y; Lin Q; Mukherjee T
    Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced separation of colloidal particles in an AsPFF device with a tilted sidewall and vertical focusing channels (t-AsPFF-v).
    Nho HW; Yoon TH
    Lab Chip; 2013 Mar; 13(5):773-6. PubMed ID: 23340906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Colloidal particle deposition from electrokinetic flow in a microfluidic channel.
    Unni HN; Yang C
    Electrophoresis; 2009 Mar; 30(5):732-41. PubMed ID: 19260008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.
    Zhang Y; Zhang J; Tang F; Li W; Wang X
    Anal Chem; 2018 Feb; 90(3):1786-1794. PubMed ID: 29297226
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wall-mode instability in plane shear flow of viscoelastic fluid over a deformable solid.
    Chokshi P; Bhade P; Kumaran V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023007. PubMed ID: 25768597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.