These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
452 related articles for article (PubMed ID: 23670175)
1. Sensitivity and resistance of JAK2 inhibitors to myeloproliferative neoplasms. Bhagwat N; Levine RL; Koppikar P Int J Hematol; 2013 Jun; 97(6):695-702. PubMed ID: 23670175 [TBL] [Abstract][Full Text] [Related]
2. The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms. Hobbs GS; Rozelle S; Mullally A Hematol Oncol Clin North Am; 2017 Aug; 31(4):613-626. PubMed ID: 28673391 [TBL] [Abstract][Full Text] [Related]
3. Mechanisms of Resistance to JAK2 Inhibitors in Myeloproliferative Neoplasms. Meyer SC Hematol Oncol Clin North Am; 2017 Aug; 31(4):627-642. PubMed ID: 28673392 [TBL] [Abstract][Full Text] [Related]
4. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Kleppe M; Kwak M; Koppikar P; Riester M; Keller M; Bastian L; Hricik T; Bhagwat N; McKenney AS; Papalexi E; Abdel-Wahab O; Rampal R; Marubayashi S; Chen JJ; Romanet V; Fridman JS; Bromberg J; Teruya-Feldstein J; Murakami M; Radimerski T; Michor F; Fan R; Levine RL Cancer Discov; 2015 Mar; 5(3):316-31. PubMed ID: 25572172 [TBL] [Abstract][Full Text] [Related]
5. Heterodimeric JAK-STAT activation as a mechanism of persistence to JAK2 inhibitor therapy. Koppikar P; Bhagwat N; Kilpivaara O; Manshouri T; Adli M; Hricik T; Liu F; Saunders LM; Mullally A; Abdel-Wahab O; Leung L; Weinstein A; Marubayashi S; Goel A; Gönen M; Estrov Z; Ebert BL; Chiosis G; Nimer SD; Bernstein BE; Verstovsek S; Levine RL Nature; 2012 Sep; 489(7414):155-9. PubMed ID: 22820254 [TBL] [Abstract][Full Text] [Related]
6. Crizotinib Has Preclinical Efficacy in Philadelphia-Negative Myeloproliferative Neoplasms. Gurska LM; Okabe R; Schurer A; Tong MM; Soto M; Choi D; Ames K; Glushakow-Smith S; Montoya A; Tein E; Miles LA; Cheng H; Hankey-Giblin P; Levine RL; Goel S; Halmos B; Gritsman K Clin Cancer Res; 2023 Mar; 29(5):943-956. PubMed ID: 36537918 [TBL] [Abstract][Full Text] [Related]
7. JAK inhibitors: pharmacology and clinical activity in chronic myeloprolipherative neoplasms. Treliński J; Robak T Curr Med Chem; 2013; 20(9):1147-61. PubMed ID: 23317159 [TBL] [Abstract][Full Text] [Related]
8. Improved targeting of JAK2 leads to increased therapeutic efficacy in myeloproliferative neoplasms. Bhagwat N; Koppikar P; Keller M; Marubayashi S; Shank K; Rampal R; Qi J; Kleppe M; Patel HJ; Shah SK; Taldone T; Bradner JE; Chiosis G; Levine RL Blood; 2014 Mar; 123(13):2075-83. PubMed ID: 24470592 [TBL] [Abstract][Full Text] [Related]
9. JAK-STAT signaling in the therapeutic landscape of myeloproliferative neoplasms. O'Sullivan JM; Harrison CN Mol Cell Endocrinol; 2017 Aug; 451():71-79. PubMed ID: 28167129 [TBL] [Abstract][Full Text] [Related]
10. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy. Pasquier F; Cabagnols X; Secardin L; Plo I; Vainchenker W Clin Lymphoma Myeloma Leuk; 2014 Sep; 14 Suppl():S23-35. PubMed ID: 25486952 [TBL] [Abstract][Full Text] [Related]
12. Dual PI3K/AKT/mTOR inhibitor BEZ235 synergistically enhances the activity of JAK2 inhibitor against cultured and primary human myeloproliferative neoplasm cells. Fiskus W; Verstovsek S; Manshouri T; Smith JE; Peth K; Abhyankar S; McGuirk J; Bhalla KN Mol Cancer Ther; 2013 May; 12(5):577-88. PubMed ID: 23445613 [TBL] [Abstract][Full Text] [Related]
13. Is there a role for JAK inhibitors in BCR-ABL1-negative myeloproliferative neoplasms other than myelofibrosis? Pardanani A; Tefferi A Leuk Lymphoma; 2014 Dec; 55(12):2706-11. PubMed ID: 25520049 [TBL] [Abstract][Full Text] [Related]
14. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms. Meyer SC; Keller MD; Chiu S; Koppikar P; Guryanova OA; Rapaport F; Xu K; Manova K; Pankov D; O'Reilly RJ; Kleppe M; McKenney AS; Shih AH; Shank K; Ahn J; Papalexi E; Spitzer B; Socci N; Viale A; Mandon E; Ebel N; Andraos R; Rubert J; Dammassa E; Romanet V; Dölemeyer A; Zender M; Heinlein M; Rampal R; Weinberg RS; Hoffman R; Sellers WR; Hofmann F; Murakami M; Baffert F; Gaul C; Radimerski T; Levine RL Cancer Cell; 2015 Jul; 28(1):15-28. PubMed ID: 26175413 [TBL] [Abstract][Full Text] [Related]
15. FRACTION: protocol of a phase II study of Fedratinib and Nivolumab combination in patients with myelofibrosis and resistance or suboptimal response to JAK-inhibitor treatment of the German MPN study group (GSG-MPN). Isfort S; von Bubnoff N; Al-Ali HK; Becker H; Götze T; le Coutre P; Griesshammer M; Moskwa C; Wohn L; Riedel J; Palandri F; Manz K; Hochhaus A; Döhner K; Heidel FH Ann Hematol; 2024 Aug; 103(8):2775-2785. PubMed ID: 38967662 [TBL] [Abstract][Full Text] [Related]
16. Janus kinase inhibitors for the treatment of myeloproliferative neoplasms. Rosenthal A; Mesa RA Expert Opin Pharmacother; 2014 Jun; 15(9):1265-76. PubMed ID: 24766055 [TBL] [Abstract][Full Text] [Related]
17. Myeloproliferative neoplasms: from JAK2 mutations discovery to JAK2 inhibitor therapies. Passamonti F; Maffioli M; Caramazza D; Cazzola M Oncotarget; 2011 Jun; 2(6):485-90. PubMed ID: 21646683 [TBL] [Abstract][Full Text] [Related]
18. RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis. Winter PS; Sarosiek KA; Lin KH; Meggendorfer M; Schnittger S; Letai A; Wood KC Sci Signal; 2014 Dec; 7(357):ra122. PubMed ID: 25538080 [TBL] [Abstract][Full Text] [Related]