These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 23670312)

  • 1. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate.
    Avelar Ferreira PA; Lopes G; Bomfeti CA; de Oliveira Longatti SM; de Sousa Soares CR; Guimarães Guilherme LR; de Souza Moreira FM
    World J Microbiol Biotechnol; 2013 Nov; 29(11):2055-66. PubMed ID: 23670312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.
    Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M
    Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metal biosorption capability of Cupriavidus taiwanensis and its effects on heavy metal removal by nodulated Mimosa pudica.
    Chen WM; Wu CH; James EK; Chang JS
    J Hazard Mater; 2008 Mar; 151(2-3):364-71. PubMed ID: 17624667
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils.
    Saraswat S; Rai JP
    Int J Phytoremediation; 2011 Mar; 13(3):271-88. PubMed ID: 21598792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil.
    Klonowska A; Moulin L; Ardley JK; Braun F; Gollagher MM; Zandberg JD; Marinova DV; Huntemann M; Reddy TBK; Varghese NJ; Woyke T; Ivanova N; Seshadri R; Kyrpides N; Reeve WG
    BMC Genomics; 2020 Mar; 21(1):214. PubMed ID: 32143559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Native rhizobia from Zn mining soil promote the growth of Leucaena leucocephala on contaminated soil.
    Rangel WM; Thijs S; Janssen J; Oliveira Longatti SM; Bonaldi DS; Ribeiro PR; Jambon I; Eevers N; Weyens N; Vangronsveld J; Moreira FM
    Int J Phytoremediation; 2017 Feb; 19(2):142-156. PubMed ID: 27409290
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Vicia faba L. var. minor and Sulla coronaria (L.) Medik associated with plant growth-promoting bacteria on lettuce cropping system and heavy metal phytoremediation under field conditions.
    Saadani O; Jebara SH; Fatnassi IC; Chiboub M; Mannai K; Zarrad I; Jebara M
    Environ Sci Pollut Res Int; 2019 Mar; 26(8):8125-8135. PubMed ID: 30693447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of catclaw Mimosa monancistra on the dissipation of soil PAHs.
    Alvarez-Bernal D; Contreras-Ramos S; Marsch R; Dendooven L
    Int J Phytoremediation; 2007; 9(2):79-90. PubMed ID: 18246717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of efficient plant-growth-promoting bacteria isolated from Sulla coronaria resistant to cadmium and to other heavy metals.
    Chiboub M; Saadani O; Fatnassi IC; Abdelkrim S; Abid G; Jebara M; Jebara SH
    C R Biol; 2016; 339(9-10):391-8. PubMed ID: 27498183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of rhizobia-legume symbiosis for remediation of heavy-metal contaminated soils].
    Wei G; Ma Z
    Wei Sheng Wu Xue Bao; 2010 Nov; 50(11):1421-30. PubMed ID: 21268885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biosorption and Symbiotic Potential of Horse Gram Rhizobia in Soils Contaminated with Cobalt.
    Edulamudi P; Antony Masilamani AJ; Vanga UR; Divi Venkata Ramana SG; Konada VM
    Curr Microbiol; 2023 Apr; 80(5):174. PubMed ID: 37029842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of legume nodulation by acidic growth conditions.
    Ferguson BJ; Lin MH; Gresshoff PM
    Plant Signal Behav; 2013 Mar; 8(3):e23426. PubMed ID: 23333963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiversity of Mimosa pudica rhizobial symbionts (Cupriavidus taiwanensis, Rhizobium mesoamericanum) in New Caledonia and their adaptation to heavy metal-rich soils.
    Klonowska A; Chaintreuil C; Tisseyre P; Miché L; Melkonian R; Ducousso M; Laguerre G; Brunel B; Moulin L
    FEMS Microbiol Ecol; 2012 Sep; 81(3):618-35. PubMed ID: 22512707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cupriavidus necator isolates are able to fix nitrogen in symbiosis with different legume species.
    da Silva K; Florentino LA; da Silva KB; de Brandt E; Vandamme P; de Souza Moreira FM
    Syst Appl Microbiol; 2012 May; 35(3):175-82. PubMed ID: 22361568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.
    Hao X; Taghavi S; Xie P; Orbach MJ; Alwathnani HA; Rensing C; Wei G
    Int J Phytoremediation; 2014; 16(2):179-202. PubMed ID: 24912209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic profiling of Burkholderia phymatum STM815, Cupriavidus taiwanensis LMG19424 and Rhizobium mesoamericanum STM3625 in response to Mimosa pudica root exudates illuminates the molecular basis of their nodulation competitiveness and symbiotic evolutionary history.
    Klonowska A; Melkonian R; Miché L; Tisseyre P; Moulin L
    BMC Genomics; 2018 Jan; 19(1):105. PubMed ID: 29378510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation of Petroleum Hydrocarbon (PHC) Contaminated Soil by Using Mimosa pudica L.
    Budhadev B; Rubul S; Sabitry B; Hari Prasad S
    J Environ Sci Eng; 2014 Jul; 56(3):327-32. PubMed ID: 26563085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress.
    Mitra S; Pramanik K; Ghosh PK; Soren T; Sarkar A; Dey RS; Pandey S; Maiti TK
    Microbiol Res; 2018 May; 210():12-25. PubMed ID: 29625654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ancient Heavy Metal Contamination in Soils as a Driver of Tolerant Anthyllis vulneraria Rhizobial Communities.
    Mohamad R; Maynaud G; Le Quéré A; Vidal C; Klonowska A; Yashiro E; Cleyet-Marel JC; Brunel B
    Appl Environ Microbiol; 2017 Jan; 83(2):. PubMed ID: 27793823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.