These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 23670702)

  • 21. Ab initio folding of albumin binding domain from all-atom molecular dynamics simulation.
    Lei H; Duan Y
    J Phys Chem B; 2007 May; 111(19):5458-63. PubMed ID: 17458992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Helices in peptoids of alpha- and beta-peptides.
    Baldauf C; Günther R; Hofmann HJ
    Phys Biol; 2006 Feb; 3(1):S1-9. PubMed ID: 16582460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Folding processes of the B domain of protein A to the native state observed in all-atom ab initio folding simulations.
    Lei H; Wu C; Wang ZX; Zhou Y; Duan Y
    J Chem Phys; 2008 Jun; 128(23):235105. PubMed ID: 18570534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexibility of "polyunsaturated fatty acid chains" and peptide backbones: A comparative ab initio study.
    Law JM; Setiadi DH; Chass GA; Csizmadia IG; Viskolcz B
    J Phys Chem A; 2005 Jan; 109(3):520-33. PubMed ID: 16833374
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Communication: The electrostatic polarization is essential to differentiate the helical propensity in polyalanine mutants.
    Wei C; Tung D; Yip YM; Mei Y; Zhang D
    J Chem Phys; 2011 May; 134(17):171101. PubMed ID: 21548661
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Folding and dimerization of the ionic peptide EAK 16-IV.
    Yan Z; Wang J; Wang W
    Proteins; 2008 Jul; 72(1):150-62. PubMed ID: 18214962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Free energy surfaces of beta-hairpin and alpha-helical peptides generated by replica exchange molecular dynamics with the AGBNP implicit solvent model.
    Felts AK; Harano Y; Gallicchio E; Levy RM
    Proteins; 2004 Aug; 56(2):310-21. PubMed ID: 15211514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A calorimetric study of the folding-unfolding of an alpha-helix with covalently closed N and C-terminal loops.
    Taylor JW; Greenfield NJ; Wu B; Privalov PL
    J Mol Biol; 1999 Aug; 291(4):965-76. PubMed ID: 10452900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling of folding and unfolding mechanisms in alanine-based alpha-helical polypeptides.
    Morozov AN; Lin SH
    J Phys Chem B; 2006 Oct; 110(41):20555-61. PubMed ID: 17034243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Essential dynamics of reversible peptide folding: memory-free conformational dynamics governed by internal hydrogen bonds.
    de Groot BL; Daura X; Mark AE; Grubmüller H
    J Mol Biol; 2001 May; 309(1):299-313. PubMed ID: 11491298
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study of generalized born models: Born radii and peptide folding.
    Zhu J; Alexov E; Honig B
    J Phys Chem B; 2005 Feb; 109(7):3008-22. PubMed ID: 16851315
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural analysis of a helical peptide unfolding pathway.
    Diana D; Ziaco B; Scarabelli G; Pedone C; Colombo G; D'Andrea LD; Fattorusso R
    Chemistry; 2010 May; 16(18):5400-7. PubMed ID: 20358558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Breaking non-native hydrophobic clusters is the rate-limiting step in the folding of an alanine-based peptide.
    Chowdhury S; Zhang W; Wu C; Xiong G; Duan Y
    Biopolymers; 2003 Jan; 68(1):63-75. PubMed ID: 12579580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Backbone dynamics, fast folding, and secondary structure formation in helical proteins and peptides.
    Hardin C; Luthey-Schulten Z; Wolynes PG
    Proteins; 1999 Feb; 34(3):281-94. PubMed ID: 10024016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trifluoroethanol promotes helix formation by destabilizing backbone exposure: desolvation rather than native hydrogen bonding defines the kinetic pathway of dimeric coiled coil folding.
    Kentsis A; Sosnick TR
    Biochemistry; 1998 Oct; 37(41):14613-22. PubMed ID: 9772190
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide.
    Stylianakis I; Shalev A; Scheiner S; Sigalas MP; Arkin IT; Glykos N; Kolocouris A
    J Comput Chem; 2020 Sep; 41(25):2177-2188. PubMed ID: 32735736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ab initio folding of helix bundle proteins using molecular dynamics simulations.
    Jang S; Kim E; Shin S; Pak Y
    J Am Chem Soc; 2003 Dec; 125(48):14841-6. PubMed ID: 14640661
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A kinetic theory of tertiary contact formation coupled to the helix-coil transition in polypeptides.
    Hausrath AC
    J Chem Phys; 2006 Aug; 125(8):084909. PubMed ID: 16965059
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.