BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 23670910)

  • 1. Assessment of the biocompatibility and stability of a gold nanoparticle collagen bioscaffold.
    Grant SA; Spradling CS; Grant DN; Fox DB; Jimenez L; Grant DA; Rone RJ
    J Biomed Mater Res A; 2014 Feb; 102(2):332-9. PubMed ID: 23670910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and in vitro studies of a polyethylene terephthalate-gold nanoparticle scaffold for improved biocompatibility.
    Whelove OE; Cozad MJ; Lee BD; Sengupta S; Bachman SL; Ramshaw BJ; Grant SA
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):142-9. PubMed ID: 21714079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold and Hydroxyapatite Nano-Composite Scaffolds for Anterior Cruciate Ligament Reconstruction: In Vitro Characterization.
    Smith SE; White RA; Grant DA; Grant SA
    J Nanosci Nanotechnol; 2016 Jan; 16(1):1160-9. PubMed ID: 27398580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of decellularized porcine diaphragm conjugated with gold nanomaterials as a tissue scaffold for wound healing.
    Cozad MJ; Bachman SL; Grant SA
    J Biomed Mater Res A; 2011 Dec; 99(3):426-34. PubMed ID: 21887737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial.
    Akturk O; Kismet K; Yasti AC; Kuru S; Duymus ME; Kaya F; Caydere M; Hucumenoglu S; Keskin D
    J Biomater Appl; 2016 Aug; 31(2):283-301. PubMed ID: 27095659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbodiimide crosslinked collagen from porcine dermal matrix for high-strength tissue engineering scaffold.
    Li J; Ren N; Qiu J; Jiang H; Zhao H; Wang G; Boughton RI; Wang Y; Liu H
    Int J Biol Macromol; 2013 Oct; 61():69-74. PubMed ID: 23820178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds.
    Caruso AB; Dunn MG
    J Biomed Mater Res A; 2005 Jun; 73(4):388-97. PubMed ID: 15880693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative study of the remodeling and integration of a novel AuNP-tissue scaffold and commercial tissue scaffolds in a porcine model.
    Grant SA; Deeken CR; Hamilton SR; Grant DA; Bachman SL; Ramshaw BJ
    J Biomed Mater Res A; 2013 Oct; 101(10):2778-87. PubMed ID: 23436761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold Nanoparticle-Collagen Gels for Soft Tissue Augmentation.
    Grant SA; Zhu J; Gootee J; Snider CL; Bellrichard M; Grant DA
    Tissue Eng Part A; 2018 Jul; 24(13-14):1091-1098. PubMed ID: 29376483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of bionanocomposite scaffolds comprised of mercaptoethylamine-functionalized gold nanoparticles crosslinked to acellular porcine tissue.
    Deeken CR; Bachman SL; Ramshaw BJ; Grant SA
    J Mater Sci Mater Med; 2012 Feb; 23(2):537-46. PubMed ID: 22071985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions.
    Duan X; Sheardown H
    Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and analysis of braid-twist collagen scaffolds.
    Walters VI; Kwansa AL; Freeman JW
    Connect Tissue Res; 2012; 53(3):255-66. PubMed ID: 22149930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of gold-nanoparticles/chitosan film: a scaffold for L929-fibroblasts.
    Türk M; Tamer U; Alver E; Çiftçi H; Metin AÜ; Karahan S
    Artif Cells Nanomed Biotechnol; 2013 Dec; 41(6):395-401. PubMed ID: 23330692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials.
    Kozłowska J; Sionkowska A
    Int J Biol Macromol; 2015 Mar; 74():397-403. PubMed ID: 25542169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dehydrothermal crosslinking of electrospun collagen.
    Drexler JW; Powell HM
    Tissue Eng Part C Methods; 2011 Jan; 17(1):9-17. PubMed ID: 20594112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Fabrication of collagen/sodium hyaluronate scaffold and its biological characteristics for cartilage tissue engineering].
    Wu W; Mao T; Feng X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Apr; 21(4):401-5. PubMed ID: 17546888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macrophage-mediated degradation of crosslinked collagen scaffolds.
    Yahyouche A; Zhidao X; Czernuszka JT; Clover AJ
    Acta Biomater; 2011 Jan; 7(1):278-86. PubMed ID: 20709200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of bionanocomposite scaffolds comprised of amine-functionalized gold nanoparticles and silicon carbide nanowires crosslinked to an acellular porcine tendon.
    Deeken CR; Fox DB; Bachman SL; Ramshaw BJ; Grant SA
    J Biomed Mater Res B Appl Biomater; 2011 May; 97(2):334-44. PubMed ID: 21394904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced biological stability of collagen with incorporation of PAMAM dendrimer.
    Zhong S; Yung LY
    J Biomed Mater Res A; 2009 Oct; 91(1):114-22. PubMed ID: 18767056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic effect of carbodiimide and dehydrothermal crosslinking on acellular dermal matrix.
    Hu Y; Liu L; Dan W; Dan N; Gu Z; Yu X
    Int J Biol Macromol; 2013 Apr; 55():221-30. PubMed ID: 23352993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.