BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 23671093)

  • 21. Low-voltage organic electronics based on a gate-tunable injection barrier in vertical graphene-organic semiconductor heterostructures.
    Hlaing H; Kim CH; Carta F; Nam CY; Barton RA; Petrone N; Hone J; Kymissis I
    Nano Lett; 2015 Jan; 15(1):69-74. PubMed ID: 25517922
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrophoretic and field-effect graphene for all-electrical DNA array technology.
    Xu G; Abbott J; Qin L; Yeung KY; Song Y; Yoon H; Kong J; Ham D
    Nat Commun; 2014 Sep; 5():4866. PubMed ID: 25189574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of Interleukin-6 Protein Using Graphene Field-Effect Transistor.
    Kumar MA; Jayavel R; Mahalingam S; Kim J; Atchudan R
    Biosensors (Basel); 2023 Aug; 13(9):. PubMed ID: 37754068
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sub-10 nm gate length graphene transistors: operating at terahertz frequencies with current saturation.
    Zheng J; Wang L; Quhe R; Liu Q; Li H; Yu D; Mei WN; Shi J; Gao Z; Lu J
    Sci Rep; 2013; 3():1314. PubMed ID: 23419782
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Operation of graphene transistors at gigahertz frequencies.
    Lin YM; Jenkins KA; Valdes-Garcia A; Small JP; Farmer DB; Avouris P
    Nano Lett; 2009 Jan; 9(1):422-6. PubMed ID: 19099364
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Current saturation and voltage gain in bilayer graphene field effect transistors.
    Szafranek BN; Fiori G; Schall D; Neumaier D; Kurz H
    Nano Lett; 2012 Mar; 12(3):1324-8. PubMed ID: 22339809
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inkjet-Printed Molybdenum Disulfide and Nitrogen-Doped Graphene Active Layer High On/Off Ratio Transistors.
    Jewel MU; Monne MA; Mishra B; Chen MY
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32121080
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid Fabrication of Graphene Field-Effect Transistors with Liquid-metal Interconnects and Electrolytic Gate Dielectric Made of Honey.
    Ordonez RC; Hayashi CK; Torres CM; Melcher JL; Kamin N; Severa G; Garmire D
    Sci Rep; 2017 Aug; 7(1):10171. PubMed ID: 28860498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In Situ Transmission Electron Microscopy Modulation of Transport in Graphene Nanoribbons.
    Rodríguez-Manzo JA; Qi ZJ; Crook A; Ahn JH; Johnson AT; Drndić M
    ACS Nano; 2016 Apr; 10(4):4004-10. PubMed ID: 27010816
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-kappa oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors.
    Liao L; Bai J; Qu Y; Lin YC; Li Y; Huang Y; Duan X
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6711-5. PubMed ID: 20308584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gate-induced insulating state in bilayer graphene devices.
    Oostinga JB; Heersche HB; Liu X; Morpurgo AF; Vandersypen LM
    Nat Mater; 2008 Feb; 7(2):151-7. PubMed ID: 18059274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electric field control of spin rotation in bilayer graphene.
    Michetti P; Recher P; Iannaccone G
    Nano Lett; 2010 Nov; 10(11):4463-9. PubMed ID: 20929246
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio.
    Qiu C; Zhang Z; Zhong D; Si J; Yang Y; Peng LM
    ACS Nano; 2015 Jan; 9(1):969-77. PubMed ID: 25545108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode.
    Ramesh P; Itkis ME; Bekyarova E; Wang F; Niyogi S; Chi X; Berger C; de Heer W; Haddon RC
    J Am Chem Soc; 2010 Oct; 132(41):14429-36. PubMed ID: 20873843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene Strain-Effect Transistor with Colossal ON/OFF Current Ratio Enabled by Reversible Nanocrack Formation in Metal Electrodes on Piezoelectric Substrates.
    Zheng Y; Sen D; Das S; Das S
    Nano Lett; 2023 Apr; 23(7):2536-2543. PubMed ID: 36996350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Large amplitude charge noise and random telegraph fluctuations in room-temperature graphene single-electron transistors.
    Fried JP; Bian X; Swett JL; Kravchenko II; Briggs GAD; Mol JA
    Nanoscale; 2020 Jan; 12(2):871-876. PubMed ID: 31833518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A graphene-based hot electron transistor.
    Vaziri S; Lupina G; Henkel C; Smith AD; Ostling M; Dabrowski J; Lippert G; Mehr W; Lemme MC
    Nano Lett; 2013 Apr; 13(4):1435-9. PubMed ID: 23488893
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters.
    Yu WJ; Li Z; Zhou H; Chen Y; Wang Y; Huang Y; Duan X
    Nat Mater; 2013 Mar; 12(3):246-52. PubMed ID: 23241535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene quantum point contact transistor for DNA sensing.
    Girdhar A; Sathe C; Schulten K; Leburton JP
    Proc Natl Acad Sci U S A; 2013 Oct; 110(42):16748-53. PubMed ID: 24082108
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tafel-Kinetics-Controlled High-Speed Switching in a Electrochemical Graphene Field-Effect Transistor.
    Li S; Yu C; Wang Y; Zhang K; Jiang K; Wang Y; Zhang J
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47991-47998. PubMed ID: 36219135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.