BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 23671119)

  • 1. Essential role for Cdk2 inhibitory phosphorylation during replication stress revealed by a human Cdk2 knockin mutation.
    Hughes BT; Sidorova J; Swanger J; Monnat RJ; Clurman BE
    Proc Natl Acad Sci U S A; 2013 May; 110(22):8954-9. PubMed ID: 23671119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of cyclin-dependent kinase 2 (CDK2) inhibitory phosphorylation in a CDK2AF knock-in mouse causes misregulation of DNA replication and centrosome duplication.
    Zhao H; Chen X; Gurian-West M; Roberts JM
    Mol Cell Biol; 2012 Apr; 32(8):1421-32. PubMed ID: 22331465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Cdk2/Cyclin E complexes is dependent on the origin of replication licensing factor Cdc6 in mammalian cells.
    Lunn CL; Chrivia JC; Baldassare JJ
    Cell Cycle; 2010 Nov; 9(22):4533-41. PubMed ID: 21088490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and functional analysis of a novel cyclin e/cdk2 substrate ankrd17.
    Deng M; Li F; Ballif BA; Li S; Chen X; Guo L; Ye X
    J Biol Chem; 2009 Mar; 284(12):7875-88. PubMed ID: 19150984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of MCM3 protein by cyclin E/cyclin-dependent kinase 2 (Cdk2) regulates its function in cell cycle.
    Li J; Deng M; Wei Q; Liu T; Tong X; Ye X
    J Biol Chem; 2011 Nov; 286(46):39776-85. PubMed ID: 21965652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of an ATM-dependent checkpoint that inhibits chromosomal DNA replication following DNA damage.
    Costanzo V; Robertson K; Ying CY; Kim E; Avvedimento E; Gottesman M; Grieco D; Gautier J
    Mol Cell; 2000 Sep; 6(3):649-59. PubMed ID: 11030344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential contribution of inhibitory phosphorylation of CDC2 and CDK2 for unperturbed cell cycle control and DNA integrity checkpoints.
    Chow JP; Siu WY; Ho HT; Ma KH; Ho CC; Poon RY
    J Biol Chem; 2003 Oct; 278(42):40815-28. PubMed ID: 12912980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WEE1 kinase limits CDK activities to safeguard DNA replication and mitotic entry.
    Elbæk CR; Petrosius V; Sørensen CS
    Mutat Res; 2020; 819-820():111694. PubMed ID: 32120135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wee1 controls genomic stability during replication by regulating the Mus81-Eme1 endonuclease.
    Domínguez-Kelly R; Martín Y; Koundrioukoff S; Tanenbaum ME; Smits VA; Medema RH; Debatisse M; Freire R
    J Cell Biol; 2011 Aug; 194(4):567-79. PubMed ID: 21859861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute reduction of an origin recognition complex (ORC) subunit in human cells reveals a requirement of ORC for Cdk2 activation.
    Machida YJ; Teer JK; Dutta A
    J Biol Chem; 2005 Jul; 280(30):27624-30. PubMed ID: 15944161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8) and regulates its function in the cell cycle.
    Sun L; Huang Y; Wei Q; Tong X; Cai R; Nalepa G; Ye X
    J Biol Chem; 2015 Feb; 290(7):4075-85. PubMed ID: 25548279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of minichromosome maintenance protein 7 (MCM7) by cyclin/cyclin-dependent kinase affects its function in cell cycle regulation.
    Wei Q; Li J; Liu T; Tong X; Ye X
    J Biol Chem; 2013 Jul; 288(27):19715-25. PubMed ID: 23720738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bifunctional regulatory element in human somatic Wee1 mediates cyclin A/Cdk2 binding and Crm1-dependent nuclear export.
    Li C; Andrake M; Dunbrack R; Enders GH
    Mol Cell Biol; 2010 Jan; 30(1):116-30. PubMed ID: 19858290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of T161 and T14 phosphorylations protects cyclin B-CDK1 from premature activation.
    Coulonval K; Kooken H; Roger PP
    Mol Biol Cell; 2011 Nov; 22(21):3971-85. PubMed ID: 21900495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation.
    Keaton MA; Bardes ES; Marquitz AR; Freel CD; Zyla TR; Rudolph J; Lew DJ
    Curr Biol; 2007 Jul; 17(14):1181-9. PubMed ID: 17614281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell Cycle-Dependent Switch of TopBP1 Functions by Cdk2 and Akt.
    Liu K; Graves JD; Lee YJ; Lin FT; Lin WC
    Mol Cell Biol; 2020 Mar; 40(8):. PubMed ID: 31964753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artemis regulates cell cycle recovery from the S phase checkpoint by promoting degradation of cyclin E.
    Wang H; Zhang X; Geng L; Teng L; Legerski RJ
    J Biol Chem; 2009 Jul; 284(27):18236-43. PubMed ID: 19423708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclin-dependent kinases and S phase control in mammalian cells.
    Woo RA; Poon RY
    Cell Cycle; 2003; 2(4):316-24. PubMed ID: 12851482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclin E is stabilized in response to replication fork barriers leading to prolonged S phase arrest.
    Lu X; Liu J; Legerski RJ
    J Biol Chem; 2009 Dec; 284(51):35325-37. PubMed ID: 19812034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirements for p53 and the ATM gene product in the regulation of G1/S and S phase checkpoints.
    Xie G; Habbersett RC; Jia Y; Peterson SR; Lehnert BE; Bradbury EM; D'Anna JA
    Oncogene; 1998 Feb; 16(6):721-36. PubMed ID: 9488036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.