BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 23671194)

  • 1. Protein-protein interaction and pathway analyses of top schizophrenia genes reveal schizophrenia susceptibility genes converge on common molecular networks and enrichment of nucleosome (chromatin) assembly genes in schizophrenia susceptibility loci.
    Luo X; Huang L; Jia P; Li M; Su B; Zhao Z; Gan L
    Schizophr Bull; 2014 Jan; 40(1):39-49. PubMed ID: 23671194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis.
    Liu Y; Li Z; Zhang M; Deng Y; Yi Z; Shi T
    BMC Med Genomics; 2013; 6 Suppl 1(Suppl 1):S17. PubMed ID: 23369358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and functional interaction network analysis reveals global enrichment of regulatory T cell genes influencing basal cell carcinoma susceptibility.
    Adolphe C; Xue A; Fard AT; Genovesi LA; Yang J; Wainwright BJ
    Genome Med; 2021 Feb; 13(1):19. PubMed ID: 33549134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exome sequences of multiplex, multigenerational families reveal schizophrenia risk loci with potential implications for neurocognitive performance.
    Kos MZ; Carless MA; Peralta J; Curran JE; Quillen EE; Almeida M; Blackburn A; Blondell L; Roalf DR; Pogue-Geile MF; Gur RC; Göring HHH; Nimgaonkar VL; Gur RE; Almasy L
    Am J Med Genet B Neuropsychiatr Genet; 2017 Dec; 174(8):817-827. PubMed ID: 28902459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights.
    Gusev A; Mancuso N; Won H; Kousi M; Finucane HK; Reshef Y; Song L; Safi A; ; McCarroll S; Neale BM; Ophoff RA; O'Donovan MC; Crawford GE; Geschwind DH; Katsanis N; Sullivan PF; Pasaniuc B; Price AL
    Nat Genet; 2018 Apr; 50(4):538-548. PubMed ID: 29632383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction.
    Ayalew M; Le-Niculescu H; Levey DF; Jain N; Changala B; Patel SD; Winiger E; Breier A; Shekhar A; Amdur R; Koller D; Nurnberger JI; Corvin A; Geyer M; Tsuang MT; Salomon D; Schork NJ; Fanous AH; O'Donovan MC; Niculescu AB
    Mol Psychiatry; 2012 Sep; 17(9):887-905. PubMed ID: 22584867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Network-Based Analysis of Schizophrenia Genome-Wide Association Data to Detect the Joint Functional Association Signals.
    Chang S; Fang K; Zhang K; Wang J
    PLoS One; 2015; 10(7):e0133404. PubMed ID: 26193471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network analysis of GWAS data.
    Leiserson MD; Eldridge JV; Ramachandran S; Raphael BJ
    Curr Opin Genet Dev; 2013 Dec; 23(6):602-10. PubMed ID: 24287332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analyzing the Role of MicroRNAs in Schizophrenia in the Context of Common Genetic Risk Variants.
    Hauberg ME; Roussos P; Grove J; Børglum AD; Mattheisen M;
    JAMA Psychiatry; 2016 Apr; 73(4):369-77. PubMed ID: 26963595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated pathway-based approach identifies association between genomic regions at CTCF and CACNB2 and schizophrenia.
    Juraeva D; Haenisch B; Zapatka M; Frank J; ; ; Witt SH; Mühleisen TW; Treutlein J; Strohmaier J; Meier S; Degenhardt F; Giegling I; Ripke S; Leber M; Lange C; Schulze TG; Mössner R; Nenadic I; Sauer H; Rujescu D; Maier W; Børglum A; Ophoff R; Cichon S; Nöthen MM; Rietschel M; Mattheisen M; Brors B
    PLoS Genet; 2014 Jun; 10(6):e1004345. PubMed ID: 24901509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systems biology analyses of gene expression and genome wide association study data in obstructive sleep apnea.
    Liu Y; Patel S; Nibbe R; Maxwell S; Chowdhury SA; Koyuturk M; Zhu X; Larkin EK; Buxbaum SG; Punjabi NM; Gharib SA; Redline S; Chance MR
    Pac Symp Biocomput; 2011; ():14-25. PubMed ID: 21121029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein interaction-based genome-wide analysis of incident coronary heart disease.
    Jensen MK; Pers TH; Dworzynski P; Girman CJ; Brunak S; Rimm EB
    Circ Cardiovasc Genet; 2011 Oct; 4(5):549-56. PubMed ID: 21880673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enriching Human Interactome with Functional Mutations to Detect High-Impact Network Modules Underlying Complex Diseases.
    Cui H; Srinivasan S; Korkin D
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31731769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes.
    Pers TH; Timshel P; Ripke S; Lent S; Sullivan PF; O'Donovan MC; Franke L; Hirschhorn JN;
    Hum Mol Genet; 2016 Mar; 25(6):1247-54. PubMed ID: 26755824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Schizophrenia in the genetic era: a review from development history, clinical features and genomic research approaches to insights of susceptibility genes.
    Lv Y; Wen L; Hu WJ; Deng C; Ren HW; Bao YN; Su BW; Gao P; Man ZY; Luo YY; Li CJ; Xiang ZX; Wang B; Luan ZL
    Metab Brain Dis; 2024 Jan; 39(1):147-171. PubMed ID: 37542622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection.
    Pardiñas AF; Holmans P; Pocklington AJ; Escott-Price V; Ripke S; Carrera N; Legge SE; Bishop S; Cameron D; Hamshere ML; Han J; Hubbard L; Lynham A; Mantripragada K; Rees E; MacCabe JH; McCarroll SA; Baune BT; Breen G; Byrne EM; Dannlowski U; Eley TC; Hayward C; Martin NG; McIntosh AM; Plomin R; Porteous DJ; Wray NR; Caballero A; Geschwind DH; Huckins LM; Ruderfer DM; Santiago E; Sklar P; Stahl EA; Won H; Agerbo E; Als TD; Andreassen OA; Bækvad-Hansen M; Mortensen PB; Pedersen CB; Børglum AD; Bybjerg-Grauholm J; Djurovic S; Durmishi N; Pedersen MG; Golimbet V; Grove J; Hougaard DM; Mattheisen M; Molden E; Mors O; Nordentoft M; Pejovic-Milovancevic M; Sigurdsson E; Silagadze T; Hansen CS; Stefansson K; Stefansson H; Steinberg S; Tosato S; Werge T; ; ; Collier DA; Rujescu D; Kirov G; Owen MJ; O'Donovan MC; Walters JTR
    Nat Genet; 2018 Mar; 50(3):381-389. PubMed ID: 29483656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence criteria for susceptibility genes for schizophrenia: a discussion from an evolutionary viewpoint.
    Doi N; Hoshi Y; Itokawa M; Usui C; Yoshikawa T; Tachikawa H
    PLoS One; 2009 Nov; 4(11):e7799. PubMed ID: 19911060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic genetic analyses of GWAS data reveal an association between the immune system and insomnia.
    Xiang B; Liu K; Yu M; Liang X; Huang C; Zhang J; He W; Lei W; Chen J; Gu X; Gong K
    Mol Genet Genomic Med; 2019 Jul; 7(7):e00742. PubMed ID: 31094102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide profiling of multiple histone methylations in olfactory cells: further implications for cellular susceptibility to oxidative stress in schizophrenia.
    Kano S; Colantuoni C; Han F; Zhou Z; Yuan Q; Wilson A; Takayanagi Y; Lee Y; Rapoport J; Eaton W; Cascella N; Ji H; Goldman D; Sawa A
    Mol Psychiatry; 2013 Jul; 18(7):740-2. PubMed ID: 22925834
    [No Abstract]   [Full Text] [Related]  

  • 20. Measuring intratumor heterogeneity by network entropy using RNA-seq data.
    Park Y; Lim S; Nam JW; Kim S
    Sci Rep; 2016 Nov; 6():37767. PubMed ID: 27883053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.