BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 23671282)

  • 1. DEF pocket in p38α facilitates substrate selectivity and mediates autophosphorylation.
    Tzarum N; Komornik N; Ben Chetrit D; Engelberg D; Livnah O
    J Biol Chem; 2013 Jul; 288(27):19537-47. PubMed ID: 23671282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active mutants of the TCR-mediated p38α alternative activation site show changes in the phosphorylation lip and DEF site formation.
    Tzarum N; Diskin R; Engelberg D; Livnah O
    J Mol Biol; 2011 Feb; 405(5):1154-69. PubMed ID: 21146537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MAP Kinase-Mediated Activation of RSK1 and MK2 Substrate Kinases.
    Sok P; Gógl G; Kumar GS; Alexa A; Singh N; Kirsch K; Sebő A; Drahos L; Gáspári Z; Peti W; Reményi A
    Structure; 2020 Oct; 28(10):1101-1113.e5. PubMed ID: 32649858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allosteric enhancement of MAP kinase p38α's activity and substrate selectivity by docking interactions.
    Tokunaga Y; Takeuchi K; Takahashi H; Shimada I
    Nat Struct Mol Biol; 2014 Aug; 21(8):704-11. PubMed ID: 25038803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the p38α MAP kinase in complex with a docking peptide from TAB1.
    Xin F; Wu J
    Sci China Life Sci; 2013 Jul; 56(7):653-60. PubMed ID: 23722236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1.
    Slack DN; Seternes OM; Gabrielsen M; Keyse SM
    J Biol Chem; 2001 May; 276(19):16491-500. PubMed ID: 11278799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active mutants of the human p38alpha mitogen-activated protein kinase.
    Diskin R; Askari N; Capone R; Engelberg D; Livnah O
    J Biol Chem; 2004 Nov; 279(45):47040-9. PubMed ID: 15284239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The third conformation of p38α MAP kinase observed in phosphorylated p38α and in solution.
    Akella R; Min X; Wu Q; Gardner KH; Goldsmith EJ
    Structure; 2010 Dec; 18(12):1571-8. PubMed ID: 21134636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitogen-activated protein kinase (MAPK) phosphatase 3-mediated cross-talk between MAPKs ERK2 and p38alpha.
    Zhang YY; Wu JW; Wang ZX
    J Biol Chem; 2011 May; 286(18):16150-62. PubMed ID: 21454500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.
    Vomastek T; Iwanicki MP; Burack WR; Tiwari D; Kumar D; Parsons JT; Weber MJ; Nandicoori VK
    Mol Cell Biol; 2008 Nov; 28(22):6954-66. PubMed ID: 18794356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determinants that control the specific interactions between TAB1 and p38alpha.
    Zhou H; Zheng M; Chen J; Xie C; Kolatkar AR; Zarubin T; Ye Z; Akella R; Lin S; Goldsmith EJ; Han J
    Mol Cell Biol; 2006 May; 26(10):3824-34. PubMed ID: 16648477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen-exchange mass spectrometry reveals activation-induced changes in the conformational mobility of p38alpha MAP kinase.
    Sours KM; Kwok SC; Rachidi T; Lee T; Ring A; Hoofnagle AN; Resing KA; Ahn NG
    J Mol Biol; 2008 Jun; 379(5):1075-93. PubMed ID: 18501927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A temperature-dependent conformational shift in p38α MAPK substrate-binding region associated with changes in substrate phosphorylation profile.
    Deredge D; Wintrode PL; Tulapurkar ME; Nagarsekar A; Zhang Y; Weber DJ; Shapiro P; Hasday JD
    J Biol Chem; 2019 Aug; 294(34):12624-12637. PubMed ID: 31213525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A one-step method to identify MAP kinase residues involved in inactivation by tyrosine- and dual-specificity protein phosphatases.
    Tárrega C; Pulido R
    Anal Biochem; 2009 Nov; 394(1):81-6. PubMed ID: 19583964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A bipartite mechanism for ERK2 recognition by its cognate regulators and substrates.
    Zhang J; Zhou B; Zheng CF; Zhang ZY
    J Biol Chem; 2003 Aug; 278(32):29901-12. PubMed ID: 12754209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the p38 alpha-MAPKAP kinase 2 heterodimer.
    Haar ET; Prabakhar P; Liu X; Lepre C
    J Biol Chem; 2007 Mar; 282(13):9733-9739. PubMed ID: 17255097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the DEF motif on phosphorylation of peptide substrates by ERK.
    Fernandes N; Allbritton NL
    Biochem Biophys Res Commun; 2009 Sep; 387(2):414-8. PubMed ID: 19615338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity.
    Burkhard KA; Chen F; Shapiro P
    J Biol Chem; 2011 Jan; 286(4):2477-85. PubMed ID: 21098038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery and characterization of a substrate selective p38alpha inhibitor.
    Davidson W; Frego L; Peet GW; Kroe RR; Labadia ME; Lukas SM; Snow RJ; Jakes S; Grygon CA; Pargellis C; Werneburg BG
    Biochemistry; 2004 Sep; 43(37):11658-71. PubMed ID: 15362850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.