These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23671664)

  • 1. A mathematical model of the mouse ventricular myocyte contraction.
    Mullins PD; Bondarenko VE
    PLoS One; 2013; 8(5):e63141. PubMed ID: 23671664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model for β
    Mullins PD; Bondarenko VE
    Am J Physiol Heart Circ Physiol; 2020 Feb; 318(2):H264-H282. PubMed ID: 31834834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contractile heterogeneity in ventricular myocardium.
    Pan W; Yang Z; Cheng J; Qian C; Wang Y
    J Cell Physiol; 2018 Aug; 233(8):6273-6279. PubMed ID: 29528120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular Ca(2+) dynamics and sarcomere length in single ventricular myocytes.
    Powell T; Matsuoka S; Sarai N; Noma A
    Cell Calcium; 2004 Jun; 35(6):535-42. PubMed ID: 15110143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of contraction and calcium handling between right and left ventricular myocytes from adult mouse heart: a role for repolarization waveform.
    Kondo RP; Dederko DA; Teutsch C; Chrast J; Catalucci D; Chien KR; Giles WR
    J Physiol; 2006 Feb; 571(Pt 1):131-46. PubMed ID: 16357014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell shortening and calcium dynamics in epicardial and endocardial myocytes from the left ventricle of Goto-Kakizaki type 2 diabetic rats.
    Smail M; Al Kury L; Qureshi MA; Shmygol A; Oz M; Singh J; Howarth FC
    Exp Physiol; 2018 Apr; 103(4):502-511. PubMed ID: 29363193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model.
    Negroni JA; Morotti S; Lascano EC; Gomes AV; Grandi E; Puglisi JL; Bers DM
    J Mol Cell Cardiol; 2015 Apr; 81():162-75. PubMed ID: 25724724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes.
    Hatano A; Okada J; Hisada T; Sugiura S
    J Biomech; 2012 Mar; 45(5):815-23. PubMed ID: 22226404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling.
    Koivumäki JT; Korhonen T; Takalo J; Weckström M; Tavi P
    BMC Physiol; 2009 Aug; 9():16. PubMed ID: 19715618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes.
    Land S; Park-Holohan SJ; Smith NP; Dos Remedios CG; Kentish JC; Niederer SA
    J Mol Cell Cardiol; 2017 May; 106():68-83. PubMed ID: 28392437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical treatment of integrated Ca dynamics within the ventricular myocyte.
    Shannon TR; Wang F; Puglisi J; Weber C; Bers DM
    Biophys J; 2004 Nov; 87(5):3351-71. PubMed ID: 15347581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polydatin modulates Ca(2+) handling, excitation-contraction coupling and β-adrenergic signaling in rat ventricular myocytes.
    Deng J; Liu W; Wang Y; Dong M; Zheng M; Liu J
    J Mol Cell Cardiol; 2012 Nov; 53(5):646-56. PubMed ID: 22921781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic manipulation of calcium-handling proteins in cardiac myocytes. II. Mathematical modeling studies.
    Coutu P; Metzger JM
    Am J Physiol Heart Circ Physiol; 2005 Feb; 288(2):H613-31. PubMed ID: 15331371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated formulation of anisotropic force-calcium relations driving spatio-temporal contractions of cardiac myocytes.
    Tracqui P; Ohayon J
    Philos Trans A Math Phys Eng Sci; 2009 Dec; 367(1908):4887-905. PubMed ID: 19884185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Models of excitation-contraction coupling in cardiac ventricular myocytes.
    Jafri MS
    Methods Mol Biol; 2012; 910():309-35. PubMed ID: 22821602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ca2+-independent alterations in diastolic sarcomere length and relaxation kinetics in a mouse model of lipotoxic diabetic cardiomyopathy.
    Flagg TP; Cazorla O; Remedi MS; Haim TE; Tones MA; Bahinski A; Numann RE; Kovacs A; Schaffer JE; Nichols CG; Nerbonne JM
    Circ Res; 2009 Jan; 104(1):95-103. PubMed ID: 19023131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cellular force-frequency response in ventricular myocytes from the varanid lizard, Varanus exanthematicus.
    Warren DE; Galli GL; Patrick SM; Shiels HA
    Am J Physiol Regul Integr Comp Physiol; 2010 Mar; 298(3):R567-74. PubMed ID: 20053961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cannabidiol on contractions and calcium signaling in rat ventricular myocytes.
    Ali RM; Al Kury LT; Yang KH; Qureshi A; Rajesh M; Galadari S; Shuba YM; Howarth FC; Oz M
    Cell Calcium; 2015 Apr; 57(4):290-9. PubMed ID: 25711828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regional effects of streptozotocin-induced diabetes on shortening and calcium transport in epicardial and endocardial myocytes from rat left ventricle.
    Smail MM; Qureshi MA; Shmygol A; Oz M; Singh J; Sydorenko V; Arabi A; Howarth FC; Al Kury L
    Physiol Rep; 2016 Nov; 4(22):. PubMed ID: 27884956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms underlying the frequency dependence of contraction and [Ca(2+)](i) transients in mouse ventricular myocytes.
    Antoons G; Mubagwa K; Nevelsteen I; Sipido KR
    J Physiol; 2002 Sep; 543(Pt 3):889-98. PubMed ID: 12231646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.