These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23671708)

  • 1. Discharge competence and pattern formation in peatlands: a meta-ecosystem model of the Everglades ridge-slough landscape.
    Heffernan JB; Watts DL; Cohen MJ
    PLoS One; 2013; 8(5):e64174. PubMed ID: 23671708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How vegetation and sediment transport feedbacks drive landscape change in the everglades and wetlands worldwide.
    Larsen LG; Harvey JW
    Am Nat; 2010 Sep; 176(3):E66-79. PubMed ID: 20635883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of the Everglades ridge and slough landscape to climate variability and 20th-century water management.
    Bernhardt CE; Willard DA
    Ecol Appl; 2009 Oct; 19(7):1723-38. PubMed ID: 19831066
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying hydrologic controls on local- and landscape-scale indicators of coastal wetland loss.
    Stagg CL; Osland MJ; Moon JA; Hall CT; Feher LC; Jones WR; Couvillion BR; Hartley SB; Vervaeke WC
    Ann Bot; 2020 Feb; 125(2):365-376. PubMed ID: 31532484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A common-mesocosm experiment recreates sawgrass (Cladium jamaicense) phenotypes from Everglades marl prairies and peat marshes.
    Richards JH; Olivas PC
    Am J Bot; 2020 Jan; 107(1):56-65. PubMed ID: 31889308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicted changes in interannual water-level fluctuations due to climate change and its implications for the vegetation of the Florida Everglades.
    van der Valk AG; Volin JC; Wetzel PR
    Environ Manage; 2015 Apr; 55(4):799-806. PubMed ID: 25566832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent cattail expansion and possible relationships to water management: changes in Upper Taylor Slough (Everglades National Park, Florida, USA).
    Surratt D; Shinde D; Aumen N
    Environ Manage; 2012 Mar; 49(3):720-33. PubMed ID: 22207477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-state succession in wetlands: a novel use of state and transition models.
    Zweig CL; Kitchens WM
    Ecology; 2009 Jul; 90(7):1900-9. PubMed ID: 19694138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signs of critical transition in the Everglades wetlands in response to climate and anthropogenic changes.
    Foti R; del Jesus M; Rinaldo A; Rodriguez-Iturbe I
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6296-300. PubMed ID: 23576751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting ecological responses of the Florida Everglades to possible future climate scenarios: introduction.
    Aumen NG; Havens KE; Best GR; Berry L
    Environ Manage; 2015 Apr; 55(4):741-8. PubMed ID: 25743272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint species distribution models of Everglades wading birds to inform restoration planning.
    D'Acunto LE; Pearlstine L; RomaƱach SS
    PLoS One; 2021; 16(1):e0245973. PubMed ID: 33508032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-based resource allocated decomposition and landscape heterogeneity in the Florida Everglades.
    Penton CR; Newman S
    J Environ Qual; 2008; 37(3):972-6. PubMed ID: 18453420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional connectivity in hydrology and ecology.
    Larsen LG; Choi J; Nungesser MK; Harvey JW
    Ecol Appl; 2012 Dec; 22(8):2204-20. PubMed ID: 23387120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential effects of climate change on Florida's Everglades.
    Nungesser M; Saunders C; Coronado-Molina C; Obeysekera J; Johnson J; McVoy C; Benscoter B
    Environ Manage; 2015 Apr; 55(4):824-35. PubMed ID: 25549995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant decomposition in wetlands: effects of hydrologic variation in a re-created everglades.
    Serna A; Richards JH; Scinto LJ
    J Environ Qual; 2013; 42(2):562-72. PubMed ID: 23673849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salinity pulses interact with seasonal dry-down to increase ecosystem carbon loss in marshes of the Florida Everglades.
    Wilson BJ; Servais S; Mazzei V; Kominoski JS; Hu M; Davis SE; Gaiser E; Sklar F; Bauman L; Kelly S; Madden C; Richards J; Rudnick D; Stachelek J; Troxler TG
    Ecol Appl; 2018 Dec; 28(8):2092-2108. PubMed ID: 30376192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Holocene dynamics of the Florida Everglades with respect to climate, dustfall, and tropical storms.
    Glaser PH; Hansen BC; Donovan JJ; Givnish TJ; Stricker CA; Volin JC
    Proc Natl Acad Sci U S A; 2013 Oct; 110(43):17211-6. PubMed ID: 24101489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape.
    Childers DL; Doren RF; Jones R; Noe GB; Rugge M; Scinto LJ
    J Environ Qual; 2003; 32(1):344-62. PubMed ID: 12549575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sea-level rise and freshwater management on long-term water levels and water quality in the Florida Coastal Everglades.
    Dessu SB; Price RM; Troxler TG; Kominoski JS
    J Environ Manage; 2018 Apr; 211():164-176. PubMed ID: 29408064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shifting Ground: Landscape-Scale Modeling of Biogeochemical Processes under Climate Change in the Florida Everglades.
    Flower H; Rains M; Carl Fitz H; Orem W; Newman S; Osborne TZ; Ramesh Reddy K; Obeysekera J
    Environ Manage; 2019 Oct; 64(4):416-435. PubMed ID: 31441014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.