These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 23671928)
1. Green tea catechins can bind and modify ERp57/PDIA3 activity. Trnková L; Ricci D; Grillo C; Colotti G; Altieri F Biochim Biophys Acta; 2013 Mar; 1830(3):2671-82. PubMed ID: 23671928 [TBL] [Abstract][Full Text] [Related]
2. Comparative Analysis of the Interaction between Different Flavonoids and PDIA3. Giamogante F; Marrocco I; Romaniello D; Eufemi M; Chichiarelli S; Altieri F Oxid Med Cell Longev; 2016; 2016():4518281. PubMed ID: 28044092 [TBL] [Abstract][Full Text] [Related]
3. Binding affinity of tea catechins for HSA: characterization by high-performance affinity chromatography with immobilized albumin column. Ishii T; Minoda K; Bae MJ; Mori T; Uekusa Y; Ichikawa T; Aihara Y; Furuta T; Wakimoto T; Kan T; Nakayama T Mol Nutr Food Res; 2010 Jun; 54(6):816-22. PubMed ID: 20013883 [TBL] [Abstract][Full Text] [Related]
4. Revealing the mechanisms of starch amylolysis affected by tea catechins using surface plasmon resonance. Xu H; Zhou J; Yu J; Wang S; Copeland L; Wang S Int J Biol Macromol; 2020 Feb; 145():527-534. PubMed ID: 31870878 [TBL] [Abstract][Full Text] [Related]
5. Catechin-mediated restructuring of a bacterial toxin inhibits activity. Chang EH; Huang J; Lin Z; Brown AC Biochim Biophys Acta Gen Subj; 2019 Jan; 1863(1):191-198. PubMed ID: 30342156 [TBL] [Abstract][Full Text] [Related]
6. DNA-binding activity of the ERp57 C-terminal domain is related to a redox-dependent conformational change. Grillo C; D'Ambrosio C; Consalvi V; Chiaraluce R; Scaloni A; Maceroni M; Eufemi M; Altieri F J Biol Chem; 2007 Apr; 282(14):10299-310. PubMed ID: 17283067 [TBL] [Abstract][Full Text] [Related]
7. DNA and RNA as new binding targets of green tea catechins. Kuzuhara T; Sei Y; Yamaguchi K; Suganuma M; Fujiki H J Biol Chem; 2006 Jun; 281(25):17446-17456. PubMed ID: 16641087 [TBL] [Abstract][Full Text] [Related]
8. The DNA-binding activity of protein disulfide isomerase ERp57 is associated with the a(') domain. Grillo C; Coppari S; Turano C; Altieri F Biochem Biophys Res Commun; 2002 Jul; 295(1):67-73. PubMed ID: 12083768 [TBL] [Abstract][Full Text] [Related]
9. Identification of green tea catechins as potent inhibitors of the polo-box domain of polo-like kinase 1. Shan HM; Shi Y; Quan J ChemMedChem; 2015 Jan; 10(1):158-63. PubMed ID: 25196850 [TBL] [Abstract][Full Text] [Related]
10. Interaction of ERp57 with calreticulin: Analysis of complex formation and effects of vancomycin. Frasconi M; Chichiarelli S; Gaucci E; Mazzei F; Grillo C; Chinazzi A; Altieri F Biophys Chem; 2012 Jan; 160(1):46-53. PubMed ID: 21996511 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of green tea and the catechins against 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the key enzyme of the MEP terpenoid biosynthetic pathway. Hui X; Liu H; Tian FL; Li FF; Li H; Gao WY Fitoterapia; 2016 Sep; 113():80-4. PubMed ID: 27439219 [TBL] [Abstract][Full Text] [Related]
12. Punicalagin, an active pomegranate component, is a new inhibitor of PDIA3 reductase activity. Giamogante F; Marrocco I; Cervoni L; Eufemi M; Chichiarelli S; Altieri F Biochimie; 2018 Apr; 147():122-129. PubMed ID: 29425676 [TBL] [Abstract][Full Text] [Related]
13. Green tea catechins prevent low-density lipoprotein oxidation via their accumulation in low-density lipoprotein particles in humans. Suzuki-Sugihara N; Kishimoto Y; Saita E; Taguchi C; Kobayashi M; Ichitani M; Ukawa Y; Sagesaka YM; Suzuki E; Kondo K Nutr Res; 2016 Jan; 36(1):16-23. PubMed ID: 26773777 [TBL] [Abstract][Full Text] [Related]
14. The binding of antibiotics to ERp57/GRP58. Gaucci E; Chichiarelli S; Grillo C; Vecchio ED; Eufemi M; Turano C J Antibiot (Tokyo); 2008 Jun; 61(6):400-2. PubMed ID: 18667789 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis. Sarkar J; Nandy SK; Chowdhury A; Chakraborti T; Chakraborti S Biomed Pharmacother; 2016 Dec; 84():340-347. PubMed ID: 27668533 [TBL] [Abstract][Full Text] [Related]
16. Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. Gradisar H; Pristovsek P; Plaper A; Jerala R J Med Chem; 2007 Jan; 50(2):264-71. PubMed ID: 17228868 [TBL] [Abstract][Full Text] [Related]
17. Targeting DNA methylation with green tea catechins. Yiannakopoulou EC Pharmacology; 2015; 95(3-4):111-6. PubMed ID: 25792496 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics study on the biophysical interactions of seven green tea catechins with lipid bilayers of cell membranes. Sirk TW; Brown EF; Sum AK; Friedman M J Agric Food Chem; 2008 Sep; 56(17):7750-8. PubMed ID: 18672886 [TBL] [Abstract][Full Text] [Related]
19. Direct interaction of natural and synthetic catechins with signal transducer activator of transcription 1 affects both its phosphorylation and activity. Menegazzi M; Mariotto S; Dal Bosco M; Darra E; Vaiana N; Shoji K; Safwat AA; Marechal JD; Perahia D; Suzuki H; Romeo S FEBS J; 2014 Feb; 281(3):724-38. PubMed ID: 24255956 [TBL] [Abstract][Full Text] [Related]
20. Covalent binding of tea catechins to protein thiols: the relationship between stability and electrophilic reactivity. Mori T; Ishii T; Akagawa M; Nakamura Y; Nakayama T Biosci Biotechnol Biochem; 2010; 74(12):2451-6. PubMed ID: 21150116 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]