These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 23672373)
1. Micro-nanopores fabricated by high-energy electron beam irradiation: suitable structure for controlling pesticide loss. Xiang Y; Wang N; Song J; Cai D; Wu Z J Agric Food Chem; 2013 Jun; 61(22):5215-9. PubMed ID: 23672373 [TBL] [Abstract][Full Text] [Related]
2. Controlling pesticide loss by natural porous micro/nano composites: straw ash-based biochar and biosilica. Cai D; Wang L; Zhang G; Zhang X; Wu Z ACS Appl Mater Interfaces; 2013 Sep; 5(18):9212-6. PubMed ID: 24001024 [TBL] [Abstract][Full Text] [Related]
3. Reducing the pollution risk of pesticide using nano networks induced by irradiation and hydrothermal treatment. Sun X; Liu Z; Zhang G; Qiu G; Zhong N; Wu L; Cai D; Wu Z J Environ Sci Health B; 2015; 50(12):901-7. PubMed ID: 26266570 [TBL] [Abstract][Full Text] [Related]
4. Contamination of persistent organic pollutants (POPs) and relevant management in China. Tieyu W; Yonglong L; Hong Z; Yajuan S Environ Int; 2005 Aug; 31(6):813-21. PubMed ID: 15982740 [TBL] [Abstract][Full Text] [Related]
5. Adsorption and desorption of chlorpyrifos to soils and sediments. Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931 [TBL] [Abstract][Full Text] [Related]
6. Magnetic diatomite for pesticide removal from aqueous solution via hydrophobic interactions. Erol K; Yıldız E; Alacabey İ; Karabörk M; Uzun L Environ Sci Pollut Res Int; 2019 Nov; 26(32):33631-33641. PubMed ID: 31587166 [TBL] [Abstract][Full Text] [Related]
7. Foliar and soil deposition of pesticide sprays in peanuts and their washoff and runoff under simulated worst-case rainfall conditions. Wauchope RD; Johnson WC; Sumner HR J Agric Food Chem; 2004 Nov; 52(23):7056-63. PubMed ID: 15537318 [TBL] [Abstract][Full Text] [Related]
8. Pesticide runoff from greenhouse production. Roseth R; Haarstad K Water Sci Technol; 2010; 61(6):1373-81. PubMed ID: 20351415 [TBL] [Abstract][Full Text] [Related]
9. Soil column leaching of pesticides. Katagi T Rev Environ Contam Toxicol; 2013; 221():1-105. PubMed ID: 23090630 [TBL] [Abstract][Full Text] [Related]
10. Improve the Dispersion of Nanoclay Using Biochar and Biosilica-Application to Decrease the Loss of Pesticide. Wang L; Cai D; Zhang G; Ge C; Wu Z; Zhang X J Nanosci Nanotechnol; 2016 Jun; 16(6):5869-74. PubMed ID: 27427646 [TBL] [Abstract][Full Text] [Related]
11. Volatilization of the pesticides chlorpyrifos and fenpropimorph from a potato crop. Leistra M; Smelt JH; Weststrate JH; van den Berg F; Aalderink R Environ Sci Technol; 2006 Jan; 40(1):96-102. PubMed ID: 16433338 [TBL] [Abstract][Full Text] [Related]
12. Distribution of organochlorine pesticides in crop growing in the province of Latina. Donnarumma L; Pompi V; Faraci A; Di Angelo A; Conte E Commun Agric Appl Biol Sci; 2007; 72(2):209-15. PubMed ID: 18399442 [TBL] [Abstract][Full Text] [Related]
13. Exposure risk assessment and evaluation of the best management practice for controlling pesticide runoff from paddy fields. Part 2: model simulation for the herbicide pretilachlor. Phong TK; Vu SH; Ishihara S; Hiramatsu K; Watanabe H Pest Manag Sci; 2011 Jan; 67(1):70-6. PubMed ID: 20954170 [TBL] [Abstract][Full Text] [Related]
14. Environmental pesticide distribution in horticultural and floricultural periurban production units. Querejeta GA; Ramos LM; Flores AP; Hughes EA; Zalts A; Montserrat JM Chemosphere; 2012 Apr; 87(5):566-72. PubMed ID: 22285036 [TBL] [Abstract][Full Text] [Related]
15. Development of a GIS-based indicator for environmental pesticide exposure and its application to a Belgian case-control study on bladder cancer. Cornelis C; Schoeters G; Kellen E; Buntinx F; Zeegers M Int J Hyg Environ Health; 2009 Mar; 212(2):172-85. PubMed ID: 18768353 [TBL] [Abstract][Full Text] [Related]
16. Removal of atrazine and four organophosphorus pesticides from environmental waters by diatomaceous earth-remediation method. Agdi K; Bouaid A; Esteban AM; Hernando PF; Azmani A; Camara C J Environ Monit; 2000 Oct; 2(5):420-3. PubMed ID: 11254043 [TBL] [Abstract][Full Text] [Related]
17. A sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for chlorpyrifos residue determination in Chinese agricultural samples. Liu YH; Chen J; Guo YR; Wang CM; Liang X; Zhu GN J Environ Sci Health B; 2011; 46(4):313-20. PubMed ID: 21500077 [TBL] [Abstract][Full Text] [Related]
18. Pesticide adsorptivity of aged particulate matter arising from crop residue burns. Yang Y; Sheng G J Agric Food Chem; 2003 Aug; 51(17):5047-51. PubMed ID: 12903968 [TBL] [Abstract][Full Text] [Related]
19. Preparation of activated carbons from agricultural residues for pesticide adsorption. Ioannidou OA; Zabaniotou AA; Stavropoulos GG; Islam MA; Albanis TA Chemosphere; 2010 Sep; 80(11):1328-36. PubMed ID: 20598734 [TBL] [Abstract][Full Text] [Related]
20. Enhancing soil sorption capacity of an agricultural soil by addition of three different organic wastes. Rojas R; Morillo J; Usero J; Delgado-Moreno L; Gan J Sci Total Environ; 2013 Aug; 458-460():614-23. PubMed ID: 23707867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]