BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 23672679)

  • 1. Fe(3-x)Ti(x)O4 nanoparticles as tunable probes of microbial metal oxidation.
    Liu J; Pearce CI; Liu C; Wang Z; Shi L; Arenholz E; Rosso KM
    J Am Chem Soc; 2013 Jun; 135(24):8896-907. PubMed ID: 23672679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and properties of titanomagnetite (Fe(3-x)Ti(x)O4) nanoparticles: a tunable solid-state Fe(II/III) redox system.
    Pearce CI; Qafoku O; Liu J; Arenholz E; Heald SM; Kukkadapu RK; Gorski CA; Henderson CM; Rosso KM
    J Colloid Interface Sci; 2012 Dec; 387(1):24-38. PubMed ID: 22939255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction of U(VI) with titanium-substituted magnetite: influence of Ti on U(IV) speciation.
    Latta DE; Pearce CI; Rosso KM; Kemner KM; Boyanov MI
    Environ Sci Technol; 2013 May; 47(9):4121-30. PubMed ID: 23597442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water.
    Crane RA; Dickinson M; Popescu IC; Scott TB
    Water Res; 2011 Apr; 45(9):2931-42. PubMed ID: 21470652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular synthesis of magnetite and metal-substituted magnetite nanoparticles.
    Roh Y; Vali H; Phelps TJ; Moon JW
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3517-20. PubMed ID: 17252802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of interfacially electronic structures of gold-magnetite heterostructures using X-ray absorption spectroscopy.
    Lin FH; Doong RA
    J Colloid Interface Sci; 2014 Mar; 417():325-32. PubMed ID: 24407694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Titanium Doping in Titanomagnetite on Neptunium Sorption and Speciation.
    Wylie EM; Olive DT; Powell BA
    Environ Sci Technol; 2016 Feb; 50(4):1853-8. PubMed ID: 26756748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: catalyst characterization, performance and degradation products.
    Zhong Y; Liang X; Zhong Y; Zhu J; Zhu S; Yuan P; He H; Zhang J
    Water Res; 2012 Oct; 46(15):4633-44. PubMed ID: 22784808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. U(VI) sorption and reduction kinetics on the magnetite (111) surface.
    Singer DM; Chatman SM; Ilton ES; Rosso KM; Banfield JF; Waychunas GA
    Environ Sci Technol; 2012 Apr; 46(7):3821-30. PubMed ID: 22394451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1.
    Liu J; Wang Z; Belchik SM; Edwards MJ; Liu C; Kennedy DW; Merkley ED; Lipton MS; Butt JN; Richardson DJ; Zachara JM; Fredrickson JK; Rosso KM; Shi L
    Front Microbiol; 2012; 3():37. PubMed ID: 22347878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of chloride and Fe(II) content on the reduction of Hg(II) by magnetite.
    Pasakarnis TS; Boyanov MI; Kemner KM; Mishra B; O'Loughlin EJ; Parkin G; Scherer MM
    Environ Sci Technol; 2013 Jul; 47(13):6987-94. PubMed ID: 23621619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size dependent microbial oxidation and reduction of magnetite nano- and micro-particles.
    Byrne JM; van der Laan G; Figueroa AI; Qafoku O; Wang C; Pearce CI; Jackson M; Feinberg J; Rosso KM; Kappler A
    Sci Rep; 2016 Aug; 6():30969. PubMed ID: 27492680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria.
    Byrne JM; Klueglein N; Pearce C; Rosso KM; Appel E; Kappler A
    Science; 2015 Mar; 347(6229):1473-6. PubMed ID: 25814583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of magnetite stoichiometry on U(VI) reduction.
    Latta DE; Gorski CA; Boyanov MI; O'Loughlin EJ; Kemner KM; Scherer MM
    Environ Sci Technol; 2012 Jan; 46(2):778-86. PubMed ID: 22148359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial preparation of metal-substituted magnetite nanoparticles.
    Moon JW; Roh Y; Lauf RJ; Vali H; Yeary LW; Phelps TJ
    J Microbiol Methods; 2007 Jul; 70(1):150-8. PubMed ID: 17532071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective.
    Shi L; Rosso KM; Zachara JM; Fredrickson JK
    Biochem Soc Trans; 2012 Dec; 40(6):1261-7. PubMed ID: 23176465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox potentials of Ti(IV) and Fe(III) complexes provide insights into titanium biodistribution mechanisms.
    Parker Siburt CJ; Lin EM; Brandt SJ; Tinoco AD; Valentine AM; Crumbliss AL
    J Inorg Biochem; 2010 Sep; 104(9):1006-9. PubMed ID: 20569990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined application of QEM-SEM and hard X-ray microscopy to determine mineralogical associations and chemical speciation of trace metals.
    Gräfe M; Landers M; Tappero R; Austin P; Gan B; Grabsch A; Klauber C
    J Environ Qual; 2011; 40(3):767-83. PubMed ID: 21546662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.