These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 23672815)
1. Skeletal muscle transcriptome profiles related to different training intensities and detraining in Standardbred horses: a search for overtraining biomarkers. te Pas MF; Wijnberg ID; Hoekman AJ; de Graaf-Roelfsema E; Keizer HA; van Breda E; Ducro B; van der Kolk JH Vet J; 2013 Sep; 197(3):717-23. PubMed ID: 23672815 [TBL] [Abstract][Full Text] [Related]
2. Skeletal muscle adaptations to prolonged training, overtraining and detraining in horses. Tyler CM; Golland LC; Evans DL; Hodgson DR; Rose RJ Pflugers Arch; 1998 Aug; 436(3):391-7. PubMed ID: 9644221 [TBL] [Abstract][Full Text] [Related]
3. Effects of prolonged training, overtraining and detraining on skeletal muscle metabolites and enzymes. McGowan CM; Golland LC; Evans DL; Hodgson DR; Rose RJ Equine Vet J Suppl; 2002 Sep; (34):257-63. PubMed ID: 12405697 [TBL] [Abstract][Full Text] [Related]
4. A scientific background for skeletal muscle conditioning in equine practice. Rivero JL J Vet Med A Physiol Pathol Clin Med; 2007 Aug; 54(6):321-32. PubMed ID: 17650153 [TBL] [Abstract][Full Text] [Related]
5. (Over)training effects on quantitative electromyography and muscle enzyme activities in standardbred horses. Wijnberg ID; van Dam KG; Graaf-Roelfsema Ed; Keizer HA; van Ginneken MM; Barneveld A; Breda Ev; van der Kolk JH J Appl Physiol (1985); 2008 Dec; 105(6):1746-53. PubMed ID: 18832760 [TBL] [Abstract][Full Text] [Related]
6. Changes in maximum oxygen uptake during prolonged training, overtraining, and detraining in horses. Tyler CM; Golland LC; Evans DL; Hodgson DR; Rose RJ J Appl Physiol (1985); 1996 Nov; 81(5):2244-9. PubMed ID: 8941551 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of equine muscle biopsy proteins during normal training and intensified training in young standardbred horses using proteomics technology. Bouwman FG; van Ginneken MM; Noben JP; Royackers E; de Graaf-Roelfsema E; Wijnberg ID; van der Kolk JH; Mariman EC; van Breda E Comp Biochem Physiol Part D Genomics Proteomics; 2010 Mar; 5(1):55-64. PubMed ID: 20374942 [TBL] [Abstract][Full Text] [Related]
8. Dietary energy source and physical conditioning affect insulin sensitivity and skeletal muscle glucose metabolism in horses. Stewart-Hunt L; Pratt-Phillips S; McCutcheon LJ; Geor RJ Equine Vet J Suppl; 2010 Nov; (38):355-60. PubMed ID: 21059030 [TBL] [Abstract][Full Text] [Related]
9. Effect of different blood-guided conditioning programmes on skeletal muscle ultrastructure and histochemistry of sport horses. Lindner A; Dag Erginsoy S; Kissenbeck S; Mosen H; Hetzel U; Drommer W; Chamizo VE; Rivero JL J Anim Physiol Anim Nutr (Berl); 2013 Apr; 97(2):374-86. PubMed ID: 22404305 [TBL] [Abstract][Full Text] [Related]
10. Moderate and high intensity sprint exercise induce differential responses in COX4I2 and PDK4 gene expression in Thoroughbred horse skeletal muscle. Hill EW; Eivers SS; McGivney BA; Fonseca RG; Gu J; Smith NA; Browne JA; MacHugh DE; Katz LM Equine Vet J Suppl; 2010 Nov; (38):576-81. PubMed ID: 21059063 [TBL] [Abstract][Full Text] [Related]
11. Oral L-carnitine combined with training promotes changes in skeletal muscle. Rivero JL; Sporleder HP; Quiroz-Rothe E; Vervuert I; Coenen M; Harmeyer J Equine Vet J Suppl; 2002 Sep; (34):269-74. PubMed ID: 12405699 [TBL] [Abstract][Full Text] [Related]
12. Plasma acylcarnitine and fatty acid profiles during exercise and training in Standardbreds. Westermann CM; Dorland B; de Sain-van der Velden MG; Wijnberg ID; Van Breda E; De Graaf-Roelfsema E; Keizer HA; Van der Kolk JH Am J Vet Res; 2008 Nov; 69(11):1469-75. PubMed ID: 18980429 [TBL] [Abstract][Full Text] [Related]
13. Effect of constant load training on skeletal muscle histochemistry of thoroughbred horses. Sinha AK; Ray SP; Rose RJ Res Vet Sci; 1993 Mar; 54(2):147-59. PubMed ID: 7681605 [TBL] [Abstract][Full Text] [Related]
14. Haematological and biochemical responses to training and overtraining. Tyler-McGowan CM; Golland LC; Evans DL; Hodgson DR; Rose RJ Equine Vet J Suppl; 1999 Jul; (30):621-5. PubMed ID: 10659331 [TBL] [Abstract][Full Text] [Related]
15. Effect of training and detraining on monocarboxylate transporter (MCT) 1 and MCT4 in Thoroughbred horses. Kitaoka Y; Masuda H; Mukai K; Hiraga A; Takemasa T; Hatta H Exp Physiol; 2011 Mar; 96(3):348-55. PubMed ID: 21148623 [TBL] [Abstract][Full Text] [Related]
16. Effects of intensified training and subsequent reduced training on glucose metabolism rate and peripheral insulin sensitivity in Standardbreds. de Graaf-Roelfsema E; Keizer HA; van Breda E; Wijnberg ID; van der Kolk JH Am J Vet Res; 2012 Sep; 73(9):1386-93. PubMed ID: 22924720 [TBL] [Abstract][Full Text] [Related]
17. Neuronal nitric oxide synthase is heterogeneously distributed in equine myofibers and highly expressed in endurance trained horses. Gondim FJ; Modolo LV; Campos GE; Salgado I Can J Vet Res; 2005 Jan; 69(1):46-52. PubMed ID: 15745222 [TBL] [Abstract][Full Text] [Related]
18. The incidence and severity of gastric ulceration does not increase in overtrained Standardbred horses. De Graaf-Roelfsema E; Keizer HA; Wijnberg ID; Van Der Kolk JH Equine Vet J Suppl; 2010 Nov; (38):58-61. PubMed ID: 21058983 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of microRNA expression in plasma and skeletal muscle of thoroughbred racehorses in training. McGivney BA; Griffin ME; Gough KF; McGivney CL; Browne JA; Hill EW; Katz LM BMC Vet Res; 2017 Nov; 13(1):347. PubMed ID: 29166903 [TBL] [Abstract][Full Text] [Related]
20. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Eivers SS; McGivney BA; Fonseca RG; MacHugh DE; Menson K; Park SD; Rivero JL; Taylor CT; Katz LM; Hill EW Physiol Genomics; 2010 Jan; 40(2):83-93. PubMed ID: 19861432 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]