BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23672940)

  • 1. Separation of galactose, 5-hydroxymethylfurfural and levulinic acid in acid hydrolysate of agarose by nanofiltration and electrodialysis.
    Kim JH; Na JG; Yang JW; Chang YK
    Bioresour Technol; 2013 Jul; 140():64-72. PubMed ID: 23672940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of red-algae Gracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.
    Jeong GT; Ra CH; Hong YK; Kim JK; Kong IS; Kim SK; Park DH
    Bioprocess Biosyst Eng; 2015 Feb; 38(2):207-17. PubMed ID: 25042893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanofiltration, bipolar electrodialysis and reactive extraction hybrid system for separation of fumaric acid from fermentation broth.
    Prochaska K; Staszak K; Woźniak-Budych MJ; Regel-Rosocka M; Adamczak M; Wiśniewski M; Staniewski J
    Bioresour Technol; 2014 Sep; 167():219-25. PubMed ID: 24983693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separation of furfural from monosaccharides by nanofiltration.
    Qi B; Luo J; Chen X; Hang X; Wan Y
    Bioresour Technol; 2011 Jul; 102(14):7111-8. PubMed ID: 21570829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii).
    Meinita MD; Hong YK; Jeong GT
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):93-8. PubMed ID: 21909671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Extraction of Fermentation Inhibitors by Means of Green Hydrophobic Deep Eutectic Solvents.
    Makoś-Chełstowska P; Słupek E; Kucharska K; Kramarz A; Gębicki J
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption.
    Jeong SY; Trinh LT; Lee HJ; Lee JW
    Bioresour Technol; 2014; 152():444-9. PubMed ID: 24321607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid method for the determination of 5-hydroxymethylfurfural and levulinic acid using a double-wavelength UV spectroscopy.
    Zhang J; Li J; Tang Y; Xue G
    ScientificWorldJournal; 2013; 2013():506329. PubMed ID: 24228006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement in HPLC separation of acetic acid and levulinic acid in the profiling of biomass hydrolysate.
    Xie R; Tu M; Wu Y; Adhikari S
    Bioresour Technol; 2011 Apr; 102(7):4938-42. PubMed ID: 21316945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.
    Ra CH; Jeong GT; Shin MK; Kim SK
    Bioresour Technol; 2013 Jul; 140():421-5. PubMed ID: 23714097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of 5-hydroxymethylfurfural biotransforming bacteria to produce 2,5-furan dicarboxylic acid in algal acid hydrolysate.
    Yang CF; Huang CR
    J Biosci Bioeng; 2018 Apr; 125(4):407-412. PubMed ID: 29183696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of 5-hydroxymethylfurfural (5-HMF) on high-rate continuous biohydrogen production from galactose.
    Anburajan P; Pugazhendhi A; Park JH; Sivagurunathan P; Kumar G; Kim SH
    Bioresour Technol; 2018 Jan; 247():1197-1200. PubMed ID: 28912078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfuric acid hydrolysis and detoxification of red alga Pterocladiella capillacea for bioethanol fermentation with thermotolerant yeast Kluyveromyces marxianus.
    Wu CH; Chien WC; Chou HK; Yang J; Lin HT
    J Microbiol Biotechnol; 2014 Sep; 24(9):1245-53. PubMed ID: 24851812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal processing of agar waste to levulinic acid and fermentation of hydrolysate to bioethanol.
    Suresh G; Kopperi H; Mohan SV
    Bioresour Technol; 2023 Aug; 382():129063. PubMed ID: 37080439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An integrated effluent free process for the production of 5-hydroxymethyl furfural (HMF), levulinic acid (LA) and KNS-ML from aqueous seaweed extract.
    Kholiya F; Rathod MR; Gangapur DR; Adimurthy S; Meena R
    Carbohydr Res; 2020 Apr; 490():107953. PubMed ID: 32146239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. InCl3-catalyzed conversion of carbohydrates into 5-hydroxymethylfurfural in biphasic system.
    Shen Y; Sun J; Yi Y; Li M; Wang B; Xu F; Sun R
    Bioresour Technol; 2014 Nov; 172():457-460. PubMed ID: 25304730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcritical water hydrolysis of N-acetyl-D-glucosamine: Hydrolysis mechanism, reaction pathways and optimization for selective production of 5-HMF and levulinic acid.
    Kulkarni SP; Dure SN; Joshi SS; Pandare KV; Mali NA
    Carbohydr Res; 2022 Jun; 516():108560. PubMed ID: 35483153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of ammonium lactate and removal of hardness from fermentation broth by nanofiltration.
    Kang SH; Chang YK; Chang HN
    Biotechnol Prog; 2004; 20(3):764-70. PubMed ID: 15176880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.
    Carter B; Gilcrease PC; Menkhaus TJ
    Biotechnol Bioeng; 2011 Sep; 108(9):2046-52. PubMed ID: 21455937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and reaction engineering of levulinic acid production from aqueous glucose solutions.
    Weingarten R; Cho J; Xing R; Conner WC; Huber GW
    ChemSusChem; 2012 Jul; 5(7):1280-90. PubMed ID: 22696262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.