These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 23673194)

  • 1. Evaluation of AERMOD and CALPUFF for predicting ambient concentrations of total suspended particulate matter (TSP) emissions from a quarry in complex terrain.
    Tartakovsky D; Broday DM; Stern E
    Environ Pollut; 2013 Aug; 179():138-45. PubMed ID: 23673194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion of TSP and PM(10) emissions from quarries in complex terrain.
    Tartakovsky D; Stern E; Broday DM
    Sci Total Environ; 2016 Jan; 542(Pt A):946-54. PubMed ID: 26562341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of the natural sources of particulate matter on the opencast mines air quality.
    Huertas JI; Huertas ME; Cervantes G; Díaz J
    Sci Total Environ; 2014 Sep; 493():1047-55. PubMed ID: 25016110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Air quality impact assessment of multiple open pit coal mines in northern Colombia.
    Huertas JI; Huertas ME; Izquierdo S; González ED
    J Environ Manage; 2012 Jan; 93(1):121-9. PubMed ID: 22054578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect estimation of emission factors for phosphate surface mining using air dispersion modeling.
    Tartakovsky D; Stern E; Broday DM
    Sci Total Environ; 2016 Jun; 556():179-88. PubMed ID: 26971219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomagnetic monitoring of industry-derived particulate pollution.
    Hansard R; Maher BA; Kinnersley R
    Environ Pollut; 2011 Jun; 159(6):1673-81. PubMed ID: 21450382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of AERMOD and CALPUFF models for simulating SO2 concentrations in a gas refinery.
    Atabi F; Jafarigol F; Moattar F; Nouri J
    Environ Monit Assess; 2016 Sep; 188(9):516. PubMed ID: 27521001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of WRF Optimal Parameterization Scheme for Different Air Quality Models].
    Yang JC; Jiang XW; Bo X; Wang G; Feng Y
    Huan Jing Ke Xue; 2023 Jan; 44(1):104-117. PubMed ID: 36635800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki.
    Vlachogianni A; Kassomenos P; Karppinen A; Karakitsios S; Kukkonen J
    Sci Total Environ; 2011 Mar; 409(8):1559-71. PubMed ID: 21277004
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact assessment of respirable suspended particulate matter from diesel generator sets used for pumping station.
    Talwar B; Pipalatkar P; Gajghate DG; Nema P
    Bull Environ Contam Toxicol; 2010 Oct; 85(4):437-41. PubMed ID: 20700577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison between monitoring and dispersion modeling approaches to assess the impact of aviation on concentrations of black carbon and nitrogen oxides at Los Angeles International Airport.
    Penn SL; Arunachalam S; Tripodis Y; Heiger-Bernays W; Levy JI
    Sci Total Environ; 2015 Sep; 527-528():47-55. PubMed ID: 25956147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China.
    Jian L; Zhao Y; Zhu YP; Zhang MB; Bertolatti D
    Sci Total Environ; 2012 Jun; 426():336-45. PubMed ID: 22522077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selecting optimal monitoring site locations for peak ambient particulate material concentrations using the MM5-CAMx4 numerical modelling system.
    Sturman A; Titov M; Zawar-Reza P
    Sci Total Environ; 2011 Jan; 409(4):810-21. PubMed ID: 21138778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PRCI ambient NO
    Panek JA; McCarthy JM; Huth AZ; Krol AJ; Nowak C
    J Air Waste Manag Assoc; 2020 May; 70(5):504-521. PubMed ID: 32186474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of low wind modeling approaches for two tall-stack databases.
    Paine R; Samani O; Kaplan M; Knipping E; Kumar N
    J Air Waste Manag Assoc; 2015 Nov; 65(11):1341-53. PubMed ID: 26302223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concentrations of air toxics in motor vehicle-dominated environments.
    Fujita EM; Campbell DE; Zielinska B; Arnott WP; Chow JC
    Res Rep Health Eff Inst; 2011 Feb; (156):3-77. PubMed ID: 21608416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc levels in suspended particulate matter in Zagreb air.
    Vadjić V; Zužul S; Pehnec G
    Bull Environ Contam Toxicol; 2010 Dec; 85(6):628-31. PubMed ID: 21107527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and elucidation of anthropogenic source contribution in PM
    Roy D; Singh G; Yadav P
    J Environ Sci (China); 2016 Oct; 48():69-78. PubMed ID: 27745674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.