These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 23673372)

  • 1. Short-term maximal-intensity resistance training increases volitional function and strength in chronic incomplete spinal cord injury: a pilot study.
    Jayaraman A; Thompson CK; Rymer WZ; Hornby TG
    J Neurol Phys Ther; 2013 Sep; 37(3):112-7. PubMed ID: 23673372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Volitional muscle strength in the legs predicts changes in walking speed following locomotor training in people with chronic spinal cord injury.
    Yang JF; Norton J; Nevett-Duchcherer J; Roy FD; Gross DP; Gorassini MA
    Phys Ther; 2011 Jun; 91(6):931-43. PubMed ID: 21511993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repeated maximal volitional effort contractions in human spinal cord injury: initial torque increases and reduced fatigue.
    Hornby TG; Lewek MD; Thompson CK; Heitz R
    Neurorehabil Neural Repair; 2009 Nov; 23(9):928-38. PubMed ID: 19478056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance training and locomotor recovery after incomplete spinal cord injury: a case series.
    Gregory CM; Bowden MG; Jayaraman A; Shah P; Behrman A; Kautz SA; Vandenborne K
    Spinal Cord; 2007 Jul; 45(7):522-30. PubMed ID: 17228358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study.
    Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC
    Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study.
    Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA
    Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotor training and muscle function after incomplete spinal cord injury: case series.
    Jayaraman A; Shah P; Gregory C; Bowden M; Stevens J; Bishop M; Walter G; Behrman A; Vandenborne K
    J Spinal Cord Med; 2008; 31(2):185-93. PubMed ID: 18581666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central excitability contributes to supramaximal volitional contractions in human incomplete spinal cord injury.
    Thompson CK; Lewek MD; Jayaraman A; Hornby TG
    J Physiol; 2011 Aug; 589(Pt 15):3739-52. PubMed ID: 21610138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Against the odds: what to expect in rehabilitation of chronic spinal cord injury with a neurologically controlled Hybrid Assistive Limb exoskeleton. A subgroup analysis of 55 patients according to age and lesion level.
    Grasmücke D; Zieriacks A; Jansen O; Fisahn C; Sczesny-Kaiser M; Wessling M; Meindl RC; Schildhauer TA; Aach M
    Neurosurg Focus; 2017 May; 42(5):E15. PubMed ID: 28463613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-based therapy for recovery of walking in individuals with chronic spinal cord injury: results from a randomized clinical trial.
    Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S
    Arch Phys Med Rehabil; 2014 Dec; 95(12):2239-46.e2. PubMed ID: 25102384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longitudinal Recovery and Reduced Costs After 120 Sessions of Locomotor Training for Motor Incomplete Spinal Cord Injury.
    Morrison SA; Lorenz D; Eskay CP; Forrest GF; Basso DM
    Arch Phys Med Rehabil; 2018 Mar; 99(3):555-562. PubMed ID: 29107040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lokomat robotic-assisted versus overground training within 3 to 6 months of incomplete spinal cord lesion: randomized controlled trial.
    Alcobendas-Maestro M; Esclarín-Ruz A; Casado-López RM; Muñoz-González A; Pérez-Mateos G; González-Valdizán E; Martín JL
    Neurorehabil Neural Repair; 2012; 26(9):1058-63. PubMed ID: 22699827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure to acute intermittent hypoxia augments somatic motor function in humans with incomplete spinal cord injury.
    Trumbower RD; Jayaraman A; Mitchell GS; Rymer WZ
    Neurorehabil Neural Repair; 2012 Feb; 26(2):163-72. PubMed ID: 21821826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of FES cycling combined with virtual reality racing biofeedback on voluntary function after incomplete SCI: a pilot study.
    Duffell LD; Paddison S; Alahmary AF; Donaldson N; Burridge J
    J Neuroeng Rehabil; 2019 Nov; 16(1):149. PubMed ID: 31771600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity-based therapy for recovery of walking in chronic spinal cord injury: results from a secondary analysis to determine responsiveness to therapy.
    Jones ML; Evans N; Tefertiller C; Backus D; Sweatman M; Tansey K; Morrison S
    Arch Phys Med Rehabil; 2014 Dec; 95(12):2247-52. PubMed ID: 25102385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ambulation and physical function after eccentric resistance training in adults with incomplete spinal cord injury: A feasibility study.
    Stone WJ; Stevens SL; Fuller DK; Caputo JL
    J Spinal Cord Med; 2019 Jul; 42(4):526-533. PubMed ID: 29360000
    [No Abstract]   [Full Text] [Related]  

  • 17. Isometric hip and knee torque measurements as an outcome measure in robot assisted gait training.
    Galen SS; Clarke CJ; McLean AN; Allan DB; Conway BA
    NeuroRehabilitation; 2014; 34(2):287-95. PubMed ID: 24419018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facilitation of descending excitatory and spinal inhibitory networks from training of endurance and precision walking in participants with incomplete spinal cord injury.
    Zewdie ET; Roy FD; Yang JF; Gorassini MA
    Prog Brain Res; 2015; 218():127-55. PubMed ID: 25890135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidural stimulation for cardiovascular function increases lower limb lean mass in individuals with chronic motor complete spinal cord injury.
    Legg Ditterline B; Harkema SJ; Willhite A; Stills S; Ugiliweneza B; Rejc E
    Exp Physiol; 2020 Oct; 105(10):1684-1691. PubMed ID: 32749719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preliminary investigation of mechanisms by which short-term resistance training increases strength of partially paralysed muscles in people with spinal cord injury.
    Bye EA; Harvey LA; Glinsky JV; Bolsterlee B; Herbert RD
    Spinal Cord; 2019 Sep; 57(9):770-777. PubMed ID: 31092897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.