These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 23673653)

  • 41. Analysis of flow within a left ventricle model fully assisted with continuous flow through the aortic valve.
    Yano T; Funayama M; Sudo S; Mitamura Y
    Artif Organs; 2012 Aug; 36(8):714-23. PubMed ID: 22882441
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of Quadrox-i and Capiox FX neonatal oxygenators with integrated arterial filters in eliminating gaseous microemboli and retaining hemodynamic properties during simulated cardiopulmonary bypass.
    Lin J; Dogal NM; Mathis RK; Qiu F; Kunselman A; Ündar A
    Perfusion; 2012 May; 27(3):235-43. PubMed ID: 22337759
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections.
    Wang C; Pekkan K; de Zélicourt D; Horner M; Parihar A; Kulkarni A; Yoganathan AP
    Ann Biomed Eng; 2007 Nov; 35(11):1840-56. PubMed ID: 17641974
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Development of a low flow resistance intravenous oxygenator.
    Federspiel WJ; Hout MS; Hewitt TJ; Lund LW; Heinrich SA; Litwak P; Walters FR; Reeder GD; Borovetz HS; Hattler BG
    ASAIO J; 1997; 43(5):M725-30. PubMed ID: 9360141
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Model-Based Design and Optimization of Blood Oxygenators.
    He G; Zhang T; Zhang J; Griffith BP; Wu ZJ
    J Med Device; 2020 Dec; 14(4):041001. PubMed ID: 32983315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flow vectorial analysis in an artificial implantable lung.
    Funakubo A; Taga I; McGillicuddy JW; Fukui Y; Hirschl RB; Bartlett RH
    ASAIO J; 2003; 49(4):383-7. PubMed ID: 12918578
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blood flow in cerebral aneurysms: comparison of phase contrast magnetic resonance and computational fluid dynamics--preliminary experience.
    Karmonik C; Klucznik R; Benndorf G
    Rofo; 2008 Mar; 180(3):209-15. PubMed ID: 18278729
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Numerical modeling of pulsatile blood flow through a mini-oxygenator in artificial lungs.
    Tang TQ; Hsu SY; Dahiya A; Soh CH; Lin KC
    Comput Methods Programs Biomed; 2021 Sep; 208():106241. PubMed ID: 34247118
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pseudo-organ boundary conditions applied to a computational fluid dynamics model of the human aorta.
    Yull Park J; Young Park C; Mo Hwang C; Sun K; Goo Min B
    Comput Biol Med; 2007 Aug; 37(8):1063-72. PubMed ID: 17140558
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Development and clinical application of a new membrane oxygenator using a microporous polysulfone membrane.
    Dohi T; Hamada E; Murakami T; Nawa S; Komoto Y; Teramoto S; Kanbayashi T
    Trans Am Soc Artif Intern Organs; 1982; 28():338-41. PubMed ID: 7164260
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Numerical simulations of blood flow in artificial and natural hearts with fluid-structure interaction.
    Doyle MG; Vergniaud JB; Tavoularis S; Bourgault Y
    Artif Organs; 2008 Nov; 32(11):870-9. PubMed ID: 18959680
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical simulation of global hydro-dynamics in a pulsatile bioreactor for cardiovascular tissue engineering.
    Shi Y
    J Biomech; 2008; 41(5):953-9. PubMed ID: 18261734
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Combining SPECT medical imaging and computational fluid dynamics for analyzing blood and dialysate flow in hemodialyzers.
    Eloot S; D'Asseler Y; De Bondt P; Verdonck R
    Int J Artif Organs; 2005 Jul; 28(7):739-49. PubMed ID: 16049908
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Fluid studies on flow behaviour in narrowing vessels with PC-velocimetry and numerical simulations].
    Lehmpfuhl M; Hao C; Martirosian P; Schick F
    Biomed Tech (Berl); 2009 Feb; 54(1):38-47. PubMed ID: 19182872
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of perfusion quality in hollow-fiber membrane oxygenators for neonatal extracorporeal life support.
    Talor J; Yee S; Rider A; Kunselman AR; Guan Y; Undar A
    Artif Organs; 2010 Apr; 34(4):E110-6. PubMed ID: 20420601
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Experimental quantification of the fluid dynamics in blood-processing devices through 4D-flow imaging: A pilot study on a real oxygenator/heat-exchanger module.
    Piatti F; Palumbo MC; Consolo F; Pluchinotta F; Greiser A; Sturla F; Votta E; Siryk SV; Vismara R; Fiore GB; Lombardi M; Redaelli A
    J Biomech; 2018 Feb; 68():14-23. PubMed ID: 29279196
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Computational study of the blood flow in three types of 3D hollow fiber membrane bundles.
    Zhang J; Chen X; Ding J; Fraser KH; Taskin ME; Griffith BP; Wu ZJ
    J Biomech Eng; 2013 Dec; 135(12):121009. PubMed ID: 24141394
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microstructured Hollow Fiber Membranes: Potential Fiber Shapes for Extracorporeal Membrane Oxygenators.
    Ecker P; Pekovits M; Yorov T; Haddadi B; Lukitsch B; Elenkov M; Janeczek C; Jordan C; Gfoehler M; Harasek M
    Membranes (Basel); 2021 May; 11(5):. PubMed ID: 34065426
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrodynamic characteristics of artificial lungs.
    Dierickx PW; De Somer F; De Wachter DS; Van Nooten G; Verdonck PR
    ASAIO J; 2000; 46(5):532-5. PubMed ID: 11016501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.