These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 23673753)

  • 1. Effects of crop rotation and management system on water-extractable organic matter concentration, structure, and bioavailability in a chernozemic agricultural soil.
    Xu N; Wilson HF; Saiers JE; Entz M
    J Environ Qual; 2013; 42(1):179-90. PubMed ID: 23673753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring changes in soil organic carbon pools, nitrogen, phosphorus, and sulfur under different agricultural management practices in the tropics.
    Verma BC; Datta SP; Rattan RK; Singh AK
    Environ Monit Assess; 2010 Dec; 171(1-4):579-93. PubMed ID: 20069448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water extractable organic matter and iron in relation to land use and seasonal changes.
    Praise S; Ito H; Sakuraba T; Pham DV; Watanabe T
    Sci Total Environ; 2020 Mar; 707():136070. PubMed ID: 31863986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.
    Bu R; Lu J; Ren T; Liu B; Li X; Cong R
    PLoS One; 2015; 10(12):e0143835. PubMed ID: 26647157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposing effects of different soil organic matter fractions on crop yields.
    Wood SA; Sokol N; Bell CW; Bradford MA; Naeem S; Wallenstein MD; Palm CA
    Ecol Appl; 2016 Oct; 26(7):2072-2085. PubMed ID: 27755738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics, biodegradability, and microbial community shift of water-extractable organic matter in rice-wheat cropping soil under different fertilization treatments.
    Hui C; Liu B; Wei R; Jiang H; Zhao Y; Liang Y; Zhang Q; Xu L
    Environ Pollut; 2019 Jun; 249():686-695. PubMed ID: 30933766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of conservation farming and biochar addition on soil organic carbon quality, nitrogen mineralization, and crop productivity in a light textured Acrisol in the sub-humid tropics.
    Munera-Echeverri JL; Martinsen V; Strand LT; Cornelissen G; Mulder J
    PLoS One; 2020; 15(2):e0228717. PubMed ID: 32027704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A case study on the method-induced difference in the chemical properties and biodegradability of soil water extractable organic carbon of a granitic forest soil.
    Wu Y; Jiang Y
    Sci Total Environ; 2016 Sep; 565():656-662. PubMed ID: 27209098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term nitrous oxide fluxes in annual and perennial agricultural and unmanaged ecosystems in the upper Midwest USA.
    Gelfand I; Shcherbak I; Millar N; Kravchenko AN; Robertson GP
    Glob Chang Biol; 2016 Nov; 22(11):3594-3607. PubMed ID: 27510313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soil microbial substrate properties and microbial community responses under irrigated organic and reduced-tillage crop and forage production systems.
    Ghimire R; Norton JB; Stahl PD; Norton U
    PLoS One; 2014; 9(8):e103901. PubMed ID: 25090235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water extractable organic carbon in untreated and chemical treated biochars.
    Lin Y; Munroe P; Joseph S; Henderson R; Ziolkowski A
    Chemosphere; 2012 Apr; 87(2):151-7. PubMed ID: 22236590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crop rotations for increased soil carbon: perenniality as a guiding principle.
    King AE; Blesh J
    Ecol Appl; 2018 Jan; 28(1):249-261. PubMed ID: 29112790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal and snowmelt-driven changes in the water-extractable organic carbon dynamics in a cool-temperate Japanese forest soil, estimated using the bomb-(14)C tracer.
    Nakanishi T; Atarashi-Andoh M; Koarashi J; Saito-Kokubu Y; Hirai K
    J Environ Radioact; 2014 Feb; 128():27-32. PubMed ID: 24270067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of long-term de-vegetation on the quantity and quality of water extractable organic matter (WEOM): biogeochemical implications.
    Akagi J; Zsolnay Á
    Chemosphere; 2008 Aug; 72(10):1462-1466. PubMed ID: 18555506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring temperature sensitivity of soil organic carbon decomposition under maize-wheat cropping systems in semi-arid India.
    Sandeep S; Manjaiah KM; Mayadevi MR; Singh AK
    Environ Monit Assess; 2016 Aug; 188(8):451. PubMed ID: 27387189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations.
    Robertson GP; Hamilton SK; Del Grosso SJ; Parton WJ
    Ecol Appl; 2011 Jun; 21(4):1055-67. PubMed ID: 21774413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention and loss of water extractable carbon in soils: effect of clay properties.
    Nguyen TT; Marschner P
    Sci Total Environ; 2014 Feb; 470-471():400-6. PubMed ID: 24144942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the impact of seawater on the production of soil water-extractable organic carbon during coastal erosion.
    Dou F; Ping CL; Guo L; Jorgenson T
    J Environ Qual; 2008; 37(6):2368-74. PubMed ID: 18948491
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen use and carbon sequestered by corn rotations in the northern corn belt, U.S.
    Pikul JL; Schumacher TE; Vigil M
    ScientificWorldJournal; 2001 Sep; 1 Suppl 2():707-13. PubMed ID: 12806069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cover crops and carbon stocks: How under-vine management influences SOC inputs and turnover in two vineyards.
    Marks JNJ; Lines TEP; Penfold C; Cavagnaro TR
    Sci Total Environ; 2022 Jul; 831():154800. PubMed ID: 35341834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.