BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 23673755)

  • 1. Hydrothermal carbonization of biomass residues: mass spectrometric characterization for ecological effects in the soil-plant system.
    Jandl G; Eckhardt KU; Bargmann I; Kücke M; Greef JM; Knicker H; Leinweber P
    J Environ Qual; 2013; 42(1):199-207. PubMed ID: 23673755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrothermal carbonization of biomass from landscape management - Influence of process parameters on soil properties of hydrochars.
    Röhrdanz M; Rebling T; Ohlert J; Jasper J; Greve T; Buchwald R; von Frieling P; Wark M
    J Environ Manage; 2016 May; 173():72-8. PubMed ID: 26974240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytotoxicity of hydrochars obtained by hydrothermal carbonization of manure-based digestate.
    Celletti S; Bergamo A; Benedetti V; Pecchi M; Patuzzi F; Basso D; Baratieri M; Cesco S; Mimmo T
    J Environ Manage; 2021 Feb; 280():111635. PubMed ID: 33187784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pyrochar and hydrochar amendments on the mineralization of the herbicide isoproturon in an agricultural soil.
    Eibisch N; Schroll R; Fuß R
    Chemosphere; 2015 Sep; 134():528-35. PubMed ID: 25543158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Properties and degradability of hydrothermal carbonization products.
    Eibisch N; Helfrich M; Don A; Mikutta R; Kruse A; Ellerbrock R; Flessa H
    J Environ Qual; 2013 Sep; 42(5):1565-73. PubMed ID: 24216434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural soil.
    Eibisch N; Schroll R; Fuß R; Mikutta R; Helfrich M; Flessa H
    Chemosphere; 2015 Jan; 119():155-162. PubMed ID: 24974225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis.
    Busch D; Stark A; Kammann CI; Glaser B
    Ecotoxicol Environ Saf; 2013 Nov; 97():59-66. PubMed ID: 23921220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights on Molecular Characteristics of Hydrochars by
    Fregolente LG; Dos Santos JV; Vinci G; Piccolo A; Moreira AB; Ferreira OP; Bisinoti MC; Spaccini R
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33672045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications.
    Taskin E; de Castro Bueno C; Allegretta I; Terzano R; Rosa AH; Loffredo E
    Chemosphere; 2019 Oct; 233():422-430. PubMed ID: 31176906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars.
    Nzediegwu C; Naeth MA; Chang SX
    Bioresour Technol; 2021 Jun; 330():124976. PubMed ID: 33743274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrothermal carbonization of kitchen waste: An analysis of solid and aqueous products and the application of hydrochar to paddy soil.
    Xu Y; Wang B; Ding S; Zhao M; Ji Y; Xie W; Feng Z; Feng Y
    Sci Total Environ; 2022 Dec; 850():157953. PubMed ID: 35963404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization.
    Lang Q; Zhang B; Liu Z; Jiao W; Xia Y; Chen Z; Li D; Ma J; Gai C
    J Environ Manage; 2019 Mar; 233():440-446. PubMed ID: 30593003
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of post-pyrolysis treatment on waste biomass derived hydrochar.
    Bahcivanji L; Gascó G; Paz-Ferreiro J; Méndez A
    Waste Manag; 2020 Apr; 106():55-61. PubMed ID: 32182562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress on the phytotoxic effects of hydrochars and toxicity reduction approaches.
    Karatas O; Khataee A; Kalderis D
    Chemosphere; 2022 Jul; 298():134357. PubMed ID: 35313162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity screening of biochar-mineral composites using germination tests.
    Mumme J; Getz J; Prasad M; Lüder U; Kern J; Mašek O; Buss W
    Chemosphere; 2018 Sep; 207():91-100. PubMed ID: 29778049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation.
    Garlapalli RK; Wirth B; Reza MT
    Bioresour Technol; 2016 Nov; 220():168-174. PubMed ID: 27567477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of feedstock type and process variables on hydrochar properties.
    Toptas Tag A; Duman G; Yanik J
    Bioresour Technol; 2018 Feb; 250():337-344. PubMed ID: 29182991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of alkalinity and acidity of process water and hydrochar washing on the adsorption of atrazine on hydrothermally produced hydrochar.
    Flora JF; Lu X; Li L; Flora JR; Berge ND
    Chemosphere; 2013 Nov; 93(9):1989-96. PubMed ID: 23931904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation of mining soils by combining Brassica napus growth and amendment with chars from manure waste.
    Cárdenas-Aguiar E; Suárez G; Paz-Ferreiro J; Askeland MPJ; Méndez A; Gascó G
    Chemosphere; 2020 Dec; 261():127798. PubMed ID: 32750617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrochar obtained with by-products from the sugarcane industry: Molecular features and effects of extracts on maize seed germination.
    Bento LR; Spaccini R; Cangemi S; Mazzei P; de Freitas BB; de Souza AEO; Moreira AB; Ferreira OP; Piccolo A; Bisinoti MC
    J Environ Manage; 2021 Mar; 281():111878. PubMed ID: 33388711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.