These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 23673760)

  • 1. Reducing phosphorus loading of surface water using iron-coated sand.
    Groenenberg JE; Chardon WJ; Koopmans GF
    J Environ Qual; 2013; 42(1):250-9. PubMed ID: 23673760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of iron-coated sand for removing soluble phosphorus from drainage water.
    Chardon WJ; Groenenberg JE; Vink JPM; Voegelin A; Koopmans GF
    Sci Total Environ; 2022 Apr; 815():152738. PubMed ID: 34974002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphorus losses from agricultural land to natural waters are reduced by immobilization in iron-rich sediments of drainage ditches.
    Baken S; Verbeeck M; Verheyen D; Diels J; Smolders E
    Water Res; 2015 Mar; 71():160-70. PubMed ID: 25616116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing phosphorus (P) losses from drained agricultural fields with iron coated sand (- glauconite) filters.
    Vandermoere S; Ralaizafisoloarivony NA; Van Ranst E; De Neve S
    Water Res; 2018 Sep; 141():329-339. PubMed ID: 29804019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of reactive materials to bind phosphorus.
    Chardon WJ; Groenenberg JE; Temminghoff EJ; Koopmans GF
    J Environ Qual; 2012; 41(3):636-46. PubMed ID: 22565245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus adsorption on iron-coated sand under reducing conditions.
    Barcala V; Jansen S; Gerritse J; Mangold S; Voegelin A; Behrends T
    J Environ Qual; 2023 Jan; 52(1):74-87. PubMed ID: 36368314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam.
    Nitzsche KS; Weigold P; Lösekann-Behrens T; Kappler A; Behrens S
    Chemosphere; 2015 Nov; 138():47-59. PubMed ID: 26037816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Drainage as a Targeted Mitigation Measure for Nitrogen and Phosphorus.
    Carstensen MV; Børgesen CD; Ovesen NB; Poulsen JR; Hvid SK; Kronvang B
    J Environ Qual; 2019 May; 48(3):677-685. PubMed ID: 31180423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in acidity and metal geochemistry in soils, groundwater, drain and river water in the Lower Murray River after a severe drought.
    Mosley LM; Fitzpatrick RW; Palmer D; Leyden E; Shand P
    Sci Total Environ; 2014 Jul; 485-486():281-291. PubMed ID: 24727046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrology and Soil Manipulations of Iron-Rich Ditch Mesocosms Provide Little Evidence of Phosphorus Capture within the Profile.
    Ruppert DE; Needelman BA; Kleinman PJA; Rabenhorst MC; Momen B; Wester DB
    J Environ Qual; 2017 May; 46(3):596-604. PubMed ID: 28724096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus losses from agricultural areas in river basins: effects and uncertainties of targeted mitigation measures.
    Kronvang B; Bechmann M; Lundekvam H; Behrendt H; Rubaek GH; Schoumans OF; Syversen N; Andersen HE; Hoffmann CC
    J Environ Qual; 2005; 34(6):2129-44. PubMed ID: 16275713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical evaluation of measures to mitigate phosphorus losses from agricultural land to surface waters in Sweden.
    Ulén B; Jakobsson C
    Sci Total Environ; 2005 May; 344(1-3):37-50. PubMed ID: 15907509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review.
    Reichenberger S; Bach M; Skitschak A; Frede HG
    Sci Total Environ; 2007 Oct; 384(1-3):1-35. PubMed ID: 17588646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological regeneration of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of pharmaceuticals from water.
    Liu W; Langenhoff AAM; Sutton NB; Rijnaarts HHM
    Chemosphere; 2018 Oct; 208():122-130. PubMed ID: 29864703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport-limited kinetics of phosphate retention on iron-coated sand and practical implications.
    Barcala V; Zech A; Osté L; Behrends T
    J Contam Hydrol; 2023 Apr; 255():104160. PubMed ID: 36822030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive dissolution of phosphorus associated with iron-oxides during saturation in agricultural soil profiles.
    Smith GJ; McDowell RW; Condron LM; Daly K; Ó hUallacháin D; Fenton O
    J Environ Qual; 2021 Sep; 50(5):1207-1219. PubMed ID: 34155644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of colloids on the attenuation and transport of phosphorus in alluvial gravel aquifer and vadose zone media.
    Pang L; Lafogler M; Knorr B; McGill E; Saunders D; Baumann T; Abraham P; Close M
    Sci Total Environ; 2016 Apr; 550():60-68. PubMed ID: 26803685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoextraction of phosphorus-enriched grassland soils.
    van der Salm C; Chardon WJ; Koopmans GF; van Middelkoop JC; Ehlert PA
    J Environ Qual; 2009; 38(2):751-61. PubMed ID: 19244497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of phosphorus sorption onto light expanded clay aggregates by means of aluminum and iron oxide coatings.
    Yaghi N; Hartikainen H
    Chemosphere; 2013 Nov; 93(9):1879-86. PubMed ID: 23866174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of colloidal phosphorus species in drainage waters from a clay soil using asymmetric flow field-flow fractionation.
    Regelink IC; Koopmans GF; van der Salm C; Weng L; van Riemsdijk WH
    J Environ Qual; 2013; 42(2):464-73. PubMed ID: 23673839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.