These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 23673760)

  • 21. Use of iron oxide nanoparticles for immobilizing phosphorus in-situ: Increase in soil reactive surface area and effect on soluble phosphorus.
    Koopmans GF; Hiemstra T; Vaseur C; Chardon WJ; Voegelin A; Groenenberg JE
    Sci Total Environ; 2020 Apr; 711():135220. PubMed ID: 31831238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L; Smolders E
    Chemosphere; 2015 Jan; 119():1113-1119. PubMed ID: 25460750
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Managing Surface Water Inputs to Reduce Phosphorus Loss from Cranberry Farms.
    Kennedy CD; Kleinman PJA; DeMoranville CJ; Elkin KR; Bryant RB; Buda AR
    J Environ Qual; 2017 Nov; 46(6):1472-1479. PubMed ID: 29293836
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ranking connectivity risk for phosphorus loss along agricultural drainage ditches.
    Moloney T; Fenton O; Daly K
    Sci Total Environ; 2020 Feb; 703():134556. PubMed ID: 31767304
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synergistic effect of coupling zero-valent iron with iron oxide-coated sand in columns for chromate and arsenate removal from groundwater: Influences of humic acid and the reactive media configuration.
    Mak MS; Lo IM; Liu T
    Water Res; 2011 Dec; 45(19):6575-84. PubMed ID: 22018698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Measurement and modeling of phosphorous transport in shallow groundwater environments.
    Hendricks GS; Shukla S; Obreza TA; Harris WG
    J Contam Hydrol; 2014 Aug; 164():125-37. PubMed ID: 24981965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of artificial drainage system design on the nitrogen attenuation potential of gley soils: Evidence from hydrochemical and isotope studies under field-scale conditions.
    Clagnan E; Thornton SF; Rolfe SA; Tuohy P; Peyton D; Wells NS; Fenton O
    J Environ Manage; 2018 Jan; 206():1028-1038. PubMed ID: 30029337
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of chemical amendments to dairy soiled water and time between application and rainfall on phosphorus and sediment losses in runoff.
    Serrenho A; Fenton O; Murphy PN; Grant J; Healy MG
    Sci Total Environ; 2012 Jul; 430():1-7. PubMed ID: 22609958
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of phosphorus in the sedimentary environments of inundated agricultural soils around the Huainan Coal Mines, Anhui, China.
    Yi Q; Xie K; Sun P; Kim Y
    Sci Total Environ; 2014 Feb; 472():538-49. PubMed ID: 24317161
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of manure application timing, crop, and soil type on phosphorus leaching.
    van Es HM; Schindelbeck RR; Jokela WE
    J Environ Qual; 2004; 33(3):1070-80. PubMed ID: 15224946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Arsenic removal from water using natural iron mineral-quartz sand columns.
    Guo H; Stüben D; Berner Z
    Sci Total Environ; 2007 May; 377(2-3):142-51. PubMed ID: 17363038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water and nutrient transport on a heavy clay soil in a fluvial plain in the Netherlands.
    van der Salm C; van den Toorn A; Chardon WJ; Koopmans GF
    J Environ Qual; 2012; 41(1):229-41. PubMed ID: 22218191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Delivery and impact bypass in a karst aquifer with high phosphorus source and pathway potential.
    Mellander PE; Jordan P; Wall DP; Melland AR; Meehan R; Kelly C; Shortle G
    Water Res; 2012 May; 46(7):2225-36. PubMed ID: 22377147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In situ bioreactors and deep drain-pipe installation to reduce nitrate losses in artificially drained fields.
    Jaynes DB; Kaspar TC; Moorman TB; Parkin TB
    J Environ Qual; 2008; 37(2):429-36. PubMed ID: 18268306
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting phosphorus losses with the PLEASE model on a local scale in Denmark and the Netherlands.
    van der Salm C; Dupas R; Grant R; Heckrath G; lversen BV; Kronvang B; Levi C; Rubaek G; Schoumans OF
    J Environ Qual; 2011; 40(5):1617-26. PubMed ID: 21913367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents.
    Boujelben N; Bouzid J; Elouear Z; Feki M; Jamoussi F; Montiel A
    J Hazard Mater; 2008 Feb; 151(1):103-10. PubMed ID: 17611022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic removal from drinking water by a household sand filter in Vietnam--effect of filter usage practices on arsenic removal efficiency and microbiological water quality.
    Nitzsche KS; Lan VM; Trang PT; Viet PH; Berg M; Voegelin A; Planer-Friedrich B; Zahoransky J; Müller SK; Byrne JM; Schröder C; Behrens S; Kappler A
    Sci Total Environ; 2015 Jan; 502():526-36. PubMed ID: 25300017
    [TBL] [Abstract][Full Text] [Related]  

  • 38. As(III) oxidation by MnO
    Gude JCJ; Rietveld LC; van Halem D
    Water Res; 2017 Mar; 111():41-51. PubMed ID: 28040540
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of iron- and manganese-cemented redoximorphic aggregates in wetland soils contaminated with mine wastes.
    Hickey PJ; McDaniel PA; Strawn DG
    J Environ Qual; 2008; 37(6):2375-85. PubMed ID: 18948492
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphorus removal performance of acid mine drainage from wastewater.
    Ruihua L; Lin Z; Tao T; Bo L
    J Hazard Mater; 2011 Jun; 190(1-3):669-76. PubMed ID: 21514994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.