These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 23673842)

  • 1. Relative phosphorus load inputs from wastewater treatment plants in a northern colorado watershed.
    Son JH; Crowley C; Goodwin S; Arabi M; Carlson KH
    J Environ Qual; 2013; 42(2):497-506. PubMed ID: 23673842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total phosphorus input to the Cache la Poudre River in Northern Colorado.
    Son JH; Goodwin S; Carlson K
    Water Environ Res; 2015 Feb; 87(2):169-78. PubMed ID: 25790519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Will stringent total nitrogen wastewater treatment plant discharge regulations achieve stream water quality goals?
    Son JH; Carlson KH
    J Environ Monit; 2012 Nov; 14(11):2921-8. PubMed ID: 23032438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing historical changes in phosphorus inputs to rivers from point and nonpoint sources in a rapidly developing watershed in eastern China, 1980-2010.
    Chen D; Hu M; Guo Y; Dahlgren RA
    Sci Total Environ; 2015 Nov; 533():196-204. PubMed ID: 26163441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sewage-effluent phosphorus: a greater risk to river eutrophication than agricultural phosphorus?
    Jarvie HP; Neal C; Withers PJ
    Sci Total Environ; 2006 May; 360(1-3):246-53. PubMed ID: 16226299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Relationship between Land Use and Vulnerability to Nitrogen and Phosphorus Pollution in an Urban Watershed.
    Tasdighi A; Arabi M; Osmond DL
    J Environ Qual; 2017 Jan; 46(1):113-122. PubMed ID: 28177402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Bivariate statistical model for calculating phosphorus input loads to the river from point and nonpoint sources].
    Chen DJ; Sun SY; Jia YN; Chen JB; Lü J
    Huan Jing Ke Xue; 2013 Jan; 34(1):84-90. PubMed ID: 23487922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.
    Chen D; Lu J; Wang H; Shen Y; Kimberley MO
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):312-20. PubMed ID: 19795144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifts in precipitation and agricultural intensity increase phosphorus concentrations and loads in an agricultural watershed.
    Waller DM; Meyer AG; Raff Z; Apfelbaum SI
    J Environ Manage; 2021 Apr; 284():112019. PubMed ID: 33540198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Source contribution to phosphorus loads from the Maumee River watershed to Lake Erie.
    Kast JB; Apostel AM; Kalcic MM; Muenich RL; Dagnew A; Long CM; Evenson G; Martin JF
    J Environ Manage; 2021 Feb; 279():111803. PubMed ID: 33341725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling phosphorus sources and transport in a headwater catchment with rapid agricultural expansion.
    Zhang W; Pueppke SG; Li H; Geng J; Diao Y; Hyndman DW
    Environ Pollut; 2019 Dec; 255(Pt 2):113273. PubMed ID: 31627173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of antibiotic occurrence in a river through pristine, urban and agricultural landscapes.
    Yang S; Carlson K
    Water Res; 2003 Nov; 37(19):4645-56. PubMed ID: 14568051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surrogate measures for providing high frequency estimates of total phosphorus concentrations in urban watersheds.
    Viviano G; Salerno F; Manfredi EC; Polesello S; Valsecchi S; Tartari G
    Water Res; 2014 Nov; 64():265-277. PubMed ID: 25076012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stream discharge and riparian land use influence in-stream concentrations and loads of phosphorus from central plains watersheds.
    Banner EB; Stahl AJ; Dodds WK
    Environ Manage; 2009 Sep; 44(3):552-65. PubMed ID: 19597871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Causal impact analysis of enhanced phosphorus effluent standard on river water quality.
    Kim S; Chung S
    J Environ Manage; 2022 Oct; 320():115931. PubMed ID: 35947911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relative contribution of sewage and diffuse phosphorus sources in the River Avon catchment, southern England: implications for nutrient management.
    Bowes MJ; Hilton J; Irons GP; Hornby DD
    Sci Total Environ; 2005 May; 344(1-3):67-81. PubMed ID: 15907511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nutrient and microbial water quality of the upper Ganga River, India: identification of pollution sources.
    Bowes MJ; Read DS; Joshi H; Sinha R; Ansari A; Hazra M; Simon M; Vishwakarma R; Armstrong LK; Nicholls DJE; Wickham HD; Ward J; Carvalho LR; Rees HG
    Environ Monit Assess; 2020 Jul; 192(8):533. PubMed ID: 32691241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. River nutrient water and sediment measurements inform on nutrient retention, with implications for eutrophication.
    Dalu T; Wasserman RJ; Magoro ML; Froneman PW; Weyl OLF
    Sci Total Environ; 2019 Sep; 684():296-302. PubMed ID: 31153076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Within-river phosphorus retention: accounting for a missing piece in the watershed phosphorus puzzle.
    Jarvie HP; Sharpley AN; Scott JT; Haggard BE; Bowes MJ; Massey LB
    Environ Sci Technol; 2012 Dec; 46(24):13284-92. PubMed ID: 23106359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence and temporal variations of TMDD in the river Rhine, Germany.
    Guedez AA; Frömmel S; Diehl P; Püttmann W
    Environ Sci Pollut Res Int; 2010 Feb; 17(2):321-30. PubMed ID: 19526261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.