These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23674125)

  • 1. Reducing the dehydrogenation temperature of lithium hydride through alloying with germanium.
    Abbas MA; Grant DM; Brunelli M; Hansen TC; Walker GS
    Phys Chem Chem Phys; 2013 Aug; 15(29):12139-46. PubMed ID: 23674125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability and reversibility of LiBH4.
    Mauron P; Buchter F; Friedrichs O; Remhof A; Bielmann M; Zwicky CN; Züttel A
    J Phys Chem B; 2008 Jan; 112(3):906-10. PubMed ID: 18088111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Destabilisation of magnesium hydride by germanium as a new potential multicomponent hydrogen storage system.
    Walker GS; Abbas M; Grant DM; Udeh C
    Chem Commun (Camb); 2011 Jul; 47(28):8001-3. PubMed ID: 21674102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potassium silanide (KSiH3): a reversible hydrogen storage material.
    Chotard JN; Tang WS; Raybaud P; Janot R
    Chemistry; 2011 Oct; 17(44):12302-9. PubMed ID: 21953694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible storage of hydrogen in destabilized LiBH4.
    Vajo JJ; Skeith SL; Mertens F
    J Phys Chem B; 2005 Mar; 109(9):3719-22. PubMed ID: 16851415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic and kinetic destabilization in LiBH4/Mg2NiH4: promise for borohydride-based hydrogen storage.
    Vajo JJ; Li W; Liu P
    Chem Commun (Camb); 2010 Sep; 46(36):6687-9. PubMed ID: 20714534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity.
    Tan X; Wang L; Holt CM; Zahiri B; Eikerling MH; Mitlin D
    Phys Chem Chem Phys; 2012 Aug; 14(31):10904-9. PubMed ID: 22782120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles.
    Paskevicius M; Sheppard DA; Buckley CE
    J Am Chem Soc; 2010 Apr; 132(14):5077-83. PubMed ID: 20307102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of H2 partial pressure on the reaction progression and reversibility of lithium-containing multicomponent destabilized hydrogen storage systems.
    Price TE; Grant DM; Weston D; Hansen T; Arnbjerg LM; Ravnsbæk DB; Jensen TR; Walker GS
    J Am Chem Soc; 2011 Aug; 133(34):13534-8. PubMed ID: 21755995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergetic effects of in situ formed CaH2 and LiBH4 on hydrogen storage properties of the Li-Mg-N-H system.
    Li B; Liu Y; Gu J; Gao M; Pan H
    Chem Asian J; 2013 Feb; 8(2):374-84. PubMed ID: 23169699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and decomposition of Li3Na(NH2)4 and investigations of Li-Na-N-H based systems for hydrogen storage.
    Jepsen LH; Wang P; Wu G; Xiong Z; Besenbacher F; Chen P; Jensen TR
    Phys Chem Chem Phys; 2016 Jan; 18(3):1735-42. PubMed ID: 26672440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ X-ray powder diffraction studies of hydrogen storage and release in the Li-N-H system.
    Makepeace JW; Jones MO; Callear SK; Edwards PP; David WI
    Phys Chem Chem Phys; 2014 Mar; 16(9):4061-70. PubMed ID: 24449151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-Driven De/Rehydrogenation of a LiH Surface under Ambient Conditions.
    Cheng Z; Guan Y; Wen H; Li Z; Cui K; Pei Q; Wang S; Pistidda C; Guo J; Cao H; Chen P
    J Phys Chem Lett; 2024 Jun; 15(25):6662-6667. PubMed ID: 38889366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functions of MgH2 in hydrogen storage reactions of the 6LiBH4-CaH2 reactive hydride composite.
    Zhou Y; Liu Y; Zhang Y; Gao M; Pan H
    Dalton Trans; 2012 Aug; 41(36):10980-7. PubMed ID: 22842399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic understanding of CoO-catalyzed hydrogen desorption from a LiBH4·NH3-3LiH system.
    Zhang Y; Liu Y; Zhang X; Li Y; Gao M; Pan H
    Dalton Trans; 2015 Aug; 44(32):14514-22. PubMed ID: 26207564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revealing Capacity Degradation of Ge Anodes in Lithium-Ion Batteries Triggered by Interfacial LiH.
    Chen G; Sun J; Li J; Du X; Xu G; Dong S; Cui G
    Angew Chem Int Ed Engl; 2023 Aug; 62(31):e202306141. PubMed ID: 37282795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamically neutral Kubas-type hydrogen storage using amorphous Cr(III) alkyl hydride gels.
    Morris L; Trudeau ML; Reed D; Book D; Antonelli DM
    Phys Chem Chem Phys; 2015 Apr; 17(14):9480-7. PubMed ID: 25766409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superior Dehydrogenation Performance of α-AlH
    Zhao S; Liang L; Liu B; Wang L; Liang F
    Small; 2022 Apr; 18(17):e2107983. PubMed ID: 35307952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible hydrogen desorption from LiBH4 catalyzed by graphene supported Pt nanoparticles.
    Xu J; Qi Z; Cao J; Meng R; Gu X; Wang W; Chen Z
    Dalton Trans; 2013 Sep; 42(36):12926-33. PubMed ID: 23719649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.