These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 23674161)

  • 1. Precision synthesis of silicon nanowires with crystalline core and amorphous shell.
    Bogart TD; Lu X; Korgel BA
    Dalton Trans; 2013 Sep; 42(35):12675-80. PubMed ID: 23674161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bulk synthesis of crystalline and crystalline core/amorphous shell silicon nanowires and their application for energy storage.
    Chen H; Xu J; Chen PC; Fang X; Qiu J; Fu Y; Zhou C
    ACS Nano; 2011 Oct; 5(10):8383-90. PubMed ID: 21942645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of amorphous silicon colloids by trisilane thermolysis in high temperature supercritical solvents.
    Pell LE; Schricker AD; Mikulec FV; Korgel BA
    Langmuir; 2004 Aug; 20(16):6546-8. PubMed ID: 15274552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled growth and luminescence of crystalline Si/SiOx core-shell nanowires.
    Kim S; Kim CO; Shin DH; Hong SH; Kim MC; Kim J; Choi SH; Kim T; Elliman RG; Kim YM
    Nanotechnology; 2010 May; 21(20):205601. PubMed ID: 20413841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solution-liquid-solid (SLS) growth of silicon nanowires.
    Heitsch AT; Fanfair DD; Tuan HY; Korgel BA
    J Am Chem Soc; 2008 Apr; 130(16):5436-7. PubMed ID: 18373344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertically aligned ZnO/amorphous-Si core-shell heterostructured nanowire arrays.
    Cheng C; Wang TL; Feng L; Li W; Ho KM; Loy MM; Fung KK; Wang N
    Nanotechnology; 2010 Nov; 21(47):475703. PubMed ID: 21030773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-fast vapour-liquid-solid synthesis of Si nanowires using ion-beam implanted gallium as catalyst.
    Hetzel M; Lugstein A; Zeiner C; Wójcik T; Pongratz P; Bertagnolli E
    Nanotechnology; 2011 Sep; 22(39):395601. PubMed ID: 21891844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma-Assisted Growth of Silicon Nanowires by Sn Catalyst: Step-by-Step Observation.
    Tang J; Maurice JL; Chen W; Misra S; Foldyna M; Johnson EV; Roca I Cabarrocas P
    Nanoscale Res Lett; 2016 Dec; 11(1):455. PubMed ID: 27734420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid axial and radial Si-GaAs heterostructures in nanowires.
    Conesa-Boj S; Dunand S; Russo-Averchi E; Heiss M; Ruffer D; Wyrsch N; Ballif C; Fontcuberta i Morral A
    Nanoscale; 2013 Oct; 5(20):9633-9. PubMed ID: 23824168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and characterization of Ge-core/a-Si-shell nanowires with conformal shell thickness deposited after gold removal for high-mobility p-channel field-effect transistors.
    Simanullang MDK; Wisna GBM; Usami K; Oda S
    Nanoscale Adv; 2020 Apr; 2(4):1465-1472. PubMed ID: 36132315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires.
    Liu WF; Oh JI; Shen WZ
    Nanotechnology; 2011 Mar; 22(12):125705. PubMed ID: 21317497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents.
    Tuan HY; Lee DC; Hanrath T; Korgel BA
    Nano Lett; 2005 Apr; 5(4):681-4. PubMed ID: 15826108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonochemical synthesis of hydrogenated amorphous silicon nanoparticles from liquid trisilane at ambient temperature and pressure.
    Cádiz Bedini AP; Klingebiel B; Luysberg M; Carius R
    Ultrason Sonochem; 2017 Nov; 39():883-888. PubMed ID: 28733019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-step fabrication of fibrous Si/Sn composite nanowire anodes by high-pressure He plasma sputtering for high-capacity Li-ion batteries.
    Uchida G; Masumoto K; Sakakibara M; Ikebe Y; Ono S; Koga K; Kozawa T
    Sci Rep; 2023 Sep; 13(1):14280. PubMed ID: 37684353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of epitaxial silicon nanowires on a Si substrate by a metal-catalyst-free process.
    Ishiyama T; Nakagawa S; Wakamatsu T
    Sci Rep; 2016 Jul; 6():30608. PubMed ID: 27465800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective synthesis and superconductivity of In-Sn intermetallic nanowires sheathed in carbon nanotubes.
    Jeong N; Yeo JG
    Nanotechnology; 2012 Jul; 23(28):285604. PubMed ID: 22728332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-temperature growth of silicon nanotubes and nanowires on amorphous substrates.
    Mbenkum BN; Schneider AS; Schütz G; Xu C; Richter G; van Aken PA; Majer G; Spatz JP
    ACS Nano; 2010 Apr; 4(4):1805-12. PubMed ID: 20218667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of iron silicon boron (Fe5Si2B) and iron boride (Fe3B) nanowires.
    Li Y; Chang RP
    J Am Chem Soc; 2006 Oct; 128(39):12778-84. PubMed ID: 17002372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical, Electrical, and Crystallographic Property Dynamics of Bent and Strained Ge/Si Core-Shell Nanowires As Revealed by in situ Transmission Electron Microscopy.
    Zhang C; Kvashnin DG; Bourgeois L; Fernando JFS; Firestein K; Sorokin PB; Fukata N; Golberg D
    Nano Lett; 2018 Nov; 18(11):7238-7246. PubMed ID: 30346785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-stopping effects of lithium penetration into silicon nanowires.
    Lang L; Dong C; Chen G; Yang J; Gu X; Xiang H; Wu R; Gong X
    Nanoscale; 2013 Dec; 5(24):12394-8. PubMed ID: 24162503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.