BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 23674166)

  • 21. Generation of complex, static solution gradients in microfluidic channels.
    Wu H; Huang B; Zare RN
    J Am Chem Soc; 2006 Apr; 128(13):4194-5. PubMed ID: 16568971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Micro/Nanofluidic device for single-cell-based assay.
    Yun KS; Yoon E
    Biomed Microdevices; 2005 Mar; 7(1):35-40. PubMed ID: 15834518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-throughput, non-equilibrium studies of single biomolecules using glass-made nanofluidic devices.
    Fontana M; Fijen C; Lemay SG; Mathwig K; Hohlbein J
    Lab Chip; 2018 Dec; 19(1):79-86. PubMed ID: 30468446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of background signals from fluorescence thermometry measurements in PDMS microchannels using fluorescence lifetime imaging.
    Robinson T; Schaerli Y; Wootton R; Hollfelder F; Dunsby C; Baldwin G; Neil M; French P; deMello A
    Lab Chip; 2009 Dec; 9(23):3437-41. PubMed ID: 19904413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Femtoliter droplet handling in nanofluidic channels: a Laplace nanovalve.
    Mawatari K; Kubota S; Xu Y; Priest C; Sedev R; Ralston J; Kitamori T
    Anal Chem; 2012 Dec; 84(24):10812-6. PubMed ID: 23214507
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanofluidic preconcentration device in a straight microchannel using ion concentration polarization.
    Ko SH; Song YA; Kim SJ; Kim M; Han J; Kang KH
    Lab Chip; 2012 Nov; 12(21):4472-82. PubMed ID: 22907316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures.
    Polinkovsky M; Gutierrez E; Levchenko A; Groisman A
    Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A method for nanofluidic device prototyping using elastomeric collapse.
    Park SM; Huh YS; Craighead HG; Erickson D
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15549-54. PubMed ID: 19717418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanofluidics in lab-on-a-chip devices.
    Kovarik ML; Jacobson SC
    Anal Chem; 2009 Sep; 81(17):7133-40. PubMed ID: 19663470
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring FET flow control and wall adsorption of charged fluorescent dye molecules in nanochannels integrated into a multiple internal reflection infrared waveguide.
    Oh YJ; Gamble TC; Leonhardt D; Chung CH; Brueck SR; Ivory CF; Lopez GP; Petsev DN; Han SM
    Lab Chip; 2008 Feb; 8(2):251-8. PubMed ID: 18231663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of channel position on sample confinement in two-dimensional planar microfluidic devices.
    Lerch MA; Hoffman MD; Jacobson SC
    Lab Chip; 2008 Feb; 8(2):316-22. PubMed ID: 18231672
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A nanofluidic channel with embedded transverse nanoelectrodes.
    Maleki T; Mohammadi S; Ziaie B
    Nanotechnology; 2009 Mar; 20(10):105302. PubMed ID: 19417517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluidic switching in nanochannels for the control of Inchworm: a synthetic biomolecular motor with a power stroke.
    Niman CS; Zuckermann MJ; Balaz M; Tegenfeldt JO; Curmi PM; Forde NR; Linke H
    Nanoscale; 2014 Dec; 6(24):15008-19. PubMed ID: 25367216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Creating Sub-50 Nm Nanofluidic Junctions in PDMS Microfluidic Chip via Self-Assembly Process of Colloidal Particles.
    Wei X; Syed A; Mao P; Han J; Song YA
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulating oxygen levels in a microfluidic device.
    Thomas PC; Raghavan SR; Forry SP
    Anal Chem; 2011 Nov; 83(22):8821-4. PubMed ID: 21995289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring DNA-protein interactions on the single DNA molecule level using nanofluidic tools.
    Frykholm K; Nyberg LK; Westerlund F
    Integr Biol (Camb); 2017 Aug; 9(8):650-661. PubMed ID: 28660960
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of a microfluidic microarray device for the fast discrimination of fungal pathogenic DNA.
    Wang L; Li PC
    Anal Biochem; 2010 May; 400(2):282-8. PubMed ID: 20083083
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High throughput fabrication of disposable nanofluidic lab-on-chip devices for single molecule studies.
    van Kan JA; Zhang C; Perumal Malar P; van der Maarel JR
    Biomicrofluidics; 2012 Sep; 6(3):36502. PubMed ID: 23898358
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.