These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 23674267)
1. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro. Velázquez-Becerra C; Macías-Rodríguez LI; López-Bucio J; Flores-Cortez I; Santoyo G; Hernández-Soberano C; Valencia-Cantero E Protoplasma; 2013 Dec; 250(6):1251-62. PubMed ID: 23674267 [TBL] [Abstract][Full Text] [Related]
2. The volatile organic compound dimethylhexadecylamine affects bacterial growth and swarming motility of bacteria. Martínez-Cámara R; Montejano-Ramírez V; Moreno-Hagelsieb G; Santoyo G; Valencia-Cantero E Folia Microbiol (Praha); 2020 Jun; 65(3):523-532. PubMed ID: 31834593 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931 [TBL] [Abstract][Full Text] [Related]
4. [Bacterium Arthrobacter agilis UMCV2 and diverse amines inhibit in vitro growth of wood-decay fungi]. Orozco-Mosqueda Mdel C; Valencia-Cantero E; López-Albarrán P; Martínez-Pacheco M; Velázquez-Becerra C Rev Argent Microbiol; 2015; 47(3):219-28. PubMed ID: 26350556 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812 [TBL] [Abstract][Full Text] [Related]
6. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Huang R; Li GQ; Zhang J; Yang L; Che HJ; Jiang DH; Huang HC Phytopathology; 2011 Jul; 101(7):859-69. PubMed ID: 21323467 [TBL] [Abstract][Full Text] [Related]
7. Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Vinale F; Ghisalberti EL; Sivasithamparam K; Marra R; Ritieni A; Ferracane R; Woo S; Lorito M Lett Appl Microbiol; 2009 Jun; 48(6):705-11. PubMed ID: 19413806 [TBL] [Abstract][Full Text] [Related]
8. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L. Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193 [TBL] [Abstract][Full Text] [Related]
9. Antiphytopathogenic activity of Psoralea glandulosa (Fabaceae) against Botrytis cinerea and Phytophthora cinnamomi. Madrid Villegas A; Díaz Peralta K; González Tapia C; Catalán Marín K; Espinoza Catalán L Nat Prod Res; 2015; 29(6):586-8. PubMed ID: 25184663 [TBL] [Abstract][Full Text] [Related]
10. Using essential oils to control diseases in strawberries and peaches. Fontana DC; Neto DD; Pretto MM; Mariotto AB; Caron BO; Kulczynski SM; Schmidt D Int J Food Microbiol; 2021 Jan; 338():108980. PubMed ID: 33243629 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of plant-pathogenic fungi by the barley cystatin Hv-CPI (gene Icy) is not associated with its cysteine-proteinase inhibitory properties. Martínez M; López-Solanilla E; Rodríguez-Palenzuela P; Carbonero P; Díaz I Mol Plant Microbe Interact; 2003 Oct; 16(10):876-83. PubMed ID: 14558689 [TBL] [Abstract][Full Text] [Related]
13. Isolation and identification of Arbutus unedo L. fungi endophytes and biological control of Phytophthora cinnamomi in vitro. Martins J; Veríssimo P; Canhoto J Protoplasma; 2022 May; 259(3):659-677. PubMed ID: 34282477 [TBL] [Abstract][Full Text] [Related]
16. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Contreras-Cornejo HA; Macías-Rodríguez L; Beltrán-Peña E; Herrera-Estrella A; López-Bucio J Plant Signal Behav; 2011 Oct; 6(10):1554-63. PubMed ID: 21931272 [TBL] [Abstract][Full Text] [Related]
17. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production. Qin X; Xiao H; Cheng X; Zhou H; Si L Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170 [TBL] [Abstract][Full Text] [Related]
18. Biocontrol activity of recombinant aspartic protease from Trichoderma harzianum against pathogenic fungi. Deng JJ; Huang WQ; Li ZW; Lu DL; Zhang Y; Luo XC Enzyme Microb Technol; 2018 May; 112():35-42. PubMed ID: 29499778 [TBL] [Abstract][Full Text] [Related]
19. Synthetic pyrazole derivatives as growth inhibitors of some phytopathogenic fungi. Vicentini CB; Romagnoli C; Andreotti E; Mares D J Agric Food Chem; 2007 Dec; 55(25):10331-8. PubMed ID: 18001038 [TBL] [Abstract][Full Text] [Related]
20. Control Effect and Possible Mechanism of the Natural Compound Phenazine-1-Carboxamide against Botrytis cinerea. Zhang Y; Wang C; Su P; Liao X PLoS One; 2015; 10(10):e0140380. PubMed ID: 26460973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]