These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 23674317)
1. Large-scale gold nanoparticle superlattice and its SERS properties for the quantitative detection of toxic carbaryl. Wu L; Wang Z; Shen B Nanoscale; 2013 Jun; 5(12):5274-8. PubMed ID: 23674317 [TBL] [Abstract][Full Text] [Related]
2. Gold nanoparticle-paper as a three-dimensional surface enhanced Raman scattering substrate. Ngo YH; Li D; Simon GP; Garnier G Langmuir; 2012 Jun; 28(23):8782-90. PubMed ID: 22594710 [TBL] [Abstract][Full Text] [Related]
3. Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables. Zhang Z; Yu Q; Li H; Mustapha A; Lin M J Food Sci; 2015 Feb; 80(2):N450-8. PubMed ID: 25604440 [TBL] [Abstract][Full Text] [Related]
4. Using Standing Gold Nanorod Arrays as Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Detection of Carbaryl Residues in Fruit Juice and Milk. Alsammarraie FK; Lin M J Agric Food Chem; 2017 Jan; 65(3):666-674. PubMed ID: 28080039 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection. Hu Y; Liao J; Wang D; Li G Anal Chem; 2014 Apr; 86(8):3955-63. PubMed ID: 24646316 [TBL] [Abstract][Full Text] [Related]
6. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates. Roca M; Haes AJ J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552 [TBL] [Abstract][Full Text] [Related]
12. Surface-enhanced Raman scattering detection of DNA derived from the west nile virus genome using magnetic capture of Raman-active gold nanoparticles. Zhang H; Harpster MH; Park HJ; Johnson PA; Wilson WC Anal Chem; 2011 Jan; 83(1):254-60. PubMed ID: 21121693 [TBL] [Abstract][Full Text] [Related]
14. Ultrasensitive vapor detection with surface-enhanced Raman scattering-active gold nanoparticle immobilized flow-through multihole capillaries. Khaing Oo MK; Guo Y; Reddy K; Liu J; Fan X Anal Chem; 2012 Apr; 84(7):3376-81. PubMed ID: 22413933 [TBL] [Abstract][Full Text] [Related]
15. Gold-nanoparticle-decorated hybrid mesoflowers: an efficient surface-enhanced Raman scattering substrate for ultra-trace detection of prostate specific antigen. Panikkanvalappil SR; El-Sayed MA J Phys Chem B; 2014 Dec; 118(49):14085-91. PubMed ID: 25144402 [TBL] [Abstract][Full Text] [Related]
16. A reproducible SERS substrate based on electrostatically assisted APTES-functionalized surface-assembly of gold nanostars. Su Q; Ma X; Dong J; Jiang C; Qian W ACS Appl Mater Interfaces; 2011 Jun; 3(6):1873-9. PubMed ID: 21528839 [TBL] [Abstract][Full Text] [Related]
17. Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. Li L; Hutter T; Steiner U; Mahajan S Analyst; 2013 Aug; 138(16):4574-8. PubMed ID: 23748709 [TBL] [Abstract][Full Text] [Related]
18. Aligned gold nanoneedle arrays for surface-enhanced Raman scattering. Yang Y; Tanemura M; Huang Z; Jiang D; Li ZY; Huang YP; Kawamura G; Yamaguchi K; Nogami M Nanotechnology; 2010 Aug; 21(32):325701. PubMed ID: 20639588 [TBL] [Abstract][Full Text] [Related]
19. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Zhong LB; Yin J; Zheng YM; Liu Q; Cheng XX; Luo FH Anal Chem; 2014 Jul; 86(13):6262-7. PubMed ID: 24873535 [TBL] [Abstract][Full Text] [Related]
20. Ultrasensitive and recyclable SERS substrate based on Au-decorated Si nanowire arrays. Yang X; Zhong H; Zhu Y; Shen J; Li C Dalton Trans; 2013 Oct; 42(39):14324-30. PubMed ID: 23963100 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]