These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 23674410)

  • 21. Pairwise and variance based signal compression algorithm (PVBSC) in the P300 based speller systems using EEG signals.
    Arican M; Polat K
    Comput Methods Programs Biomed; 2019 Jul; 176():149-157. PubMed ID: 31200902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatial-temporal discriminant analysis for ERP-based brain-computer interface.
    Zhang Y; Zhou G; Zhao Q; Jin J; Wang X; Cichocki A
    IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):233-43. PubMed ID: 23476005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B; Dornhege G; Krauledat M; Müller KR; Curio G
    Neuroimage; 2007 Aug; 37(2):539-50. PubMed ID: 17475513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-calibration algorithm in an asynchronous P300-based brain-computer interface.
    Schettini F; Aloise F; Aricò P; Salinari S; Mattia D; Cincotti F
    J Neural Eng; 2014 Jun; 11(3):035004. PubMed ID: 24838347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [A P300 detection algorithm based on F-score feature selection and support vector machines].
    Yang L; Li J; Yao Y; Wu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Feb; 25(1):23-6, 52. PubMed ID: 18435249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semi-supervised joint spatio-temporal feature selection for P300-based BCI speller.
    Long J; Gu Z; Li Y; Yu T; Li F; Fu M
    Cogn Neurodyn; 2011 Nov; 5(4):387-98. PubMed ID: 23115595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptive training session for a P300 speller brain-computer interface.
    Rivet B; Cecotti H; Perrin M; Maby E; Mattout J
    J Physiol Paris; 2011; 105(1-3):123-9. PubMed ID: 21843639
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm.
    Yin E; Zhou Z; Jiang J; Chen F; Liu Y; Hu D
    J Neural Eng; 2013 Apr; 10(2):026012. PubMed ID: 23429035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time analysis on ensemble SVM scores to reduce P300-Speller intensification time.
    Kha Vo ; Nguyen DN; Ha Hoang Kha ; Dutkiewicz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():4383-4386. PubMed ID: 29060868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self-paced brain-computer interface control of ambulation in a virtual reality environment.
    Wang PT; King CE; Chui LA; Do AH; Nenadic Z
    J Neural Eng; 2012 Oct; 9(5):056016. PubMed ID: 23010771
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Incorporation of Inter-Subject Information to Improve the Accuracy of Subject-Specific P300 Classifiers.
    Xu M; Liu J; Chen L; Qi H; He F; Zhou P; Wan B; Ming D
    Int J Neural Syst; 2016 May; 26(3):1650010. PubMed ID: 27005002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Language Model-Guided Classifier Adaptation for Brain-Computer Interfaces for Communication.
    Chen XJ; Collins LM; Mainsah BO
    Conf Proc IEEE Int Conf Syst Man Cybern; 2022 Oct; 2022():1642-1647. PubMed ID: 36776946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A brain computer interface-based explorer.
    Bai L; Yu T; Li Y
    J Neurosci Methods; 2015 Apr; 244():2-7. PubMed ID: 24975290
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An effective BCI speller based on semi-supervised learning.
    Li H; Li Y; Guan C
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1161-4. PubMed ID: 17946028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Convolutional neural networks for P300 detection with application to brain-computer interfaces.
    Cecotti H; Gräser A
    IEEE Trans Pattern Anal Mach Intell; 2011 Mar; 33(3):433-45. PubMed ID: 20567055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-trial EEG source reconstruction for brain-computer interface.
    Noirhomme Q; Kitney RI; Macq B
    IEEE Trans Biomed Eng; 2008 May; 55(5):1592-601. PubMed ID: 18440905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hierarchical semi-supervised extreme learning machine method for EEG recognition.
    She Q; Hu B; Luo Z; Nguyen T; Zhang Y
    Med Biol Eng Comput; 2019 Jan; 57(1):147-157. PubMed ID: 30054779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subspace estimation approach to P300 detection and application to brain-computer interface.
    Rivet B; Souloumiac A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5071-4. PubMed ID: 18003146
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Autocalibration and recurrent adaptation: towards a plug and play online ERD-BCI.
    Faller J; Vidaurre C; Solis-Escalante T; Neuper C; Scherer R
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):313-9. PubMed ID: 22481835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.