These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 236745)

  • 1. Fluorinated amino acids and phosphopyridoxyl fluoramino acids as reversible active site directed inhibitors of aspartate transaminase-1.
    Relimpio A; Slebe JC; Martinez-Carrion M
    Biochem Biophys Res Commun; 1975 Apr; 63(3):625-34. PubMed ID: 236745
    [No Abstract]   [Full Text] [Related]  

  • 2. Fluorine-19 as a covalent active site-directed magnetic resonance probe in aspartate transaminase.
    Martinez-Carrion M; Slebe JC; Boettcher B; Relimpio AM
    J Biol Chem; 1976 Apr; 251(7):1853-8. PubMed ID: 5432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labilization of the phosphoester linkage in enzyme-inhibitor complexes of aspartate aminotransferase.
    Khurs EN; Severin ES; Dixon HB; Khomutov RM
    Mol Biol (Mosk); 1976; 10(4):740-7. PubMed ID: 15213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence studies on the interaction between pyridoxal phosphate enzymes.
    Churchich JE; Oh KJ
    J Biol Chem; 1974 Sep; 249(17):5623-7. PubMed ID: 4472117
    [No Abstract]   [Full Text] [Related]  

  • 5. The interaction of pyridoxal phosphate with aspartate apoaminotransferase.
    Fonda ML; Auerbach SB
    Biochim Biophys Acta; 1976 Jan; 422(1):38-47. PubMed ID: 942861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions between subunits of aspartate aminotransferase. Formation of monoliganded dimers during titration of the apoenzyme by pyridoxal 5'-phosphate.
    Arrio-Dupont M; Vergé D
    J Mol Biol; 1982 May; 157(2):383-94. PubMed ID: 7108963
    [No Abstract]   [Full Text] [Related]  

  • 7. Nuclear magnetic resonance of aspartate transaminase. A 19 F and 1 H investigation of the binding of dicarboxylic acids to various forms of each isoenzyme.
    Martinez-Carrion M; Cheng S; Relimpio AM
    J Biol Chem; 1973 Mar; 248(6):2153-60. PubMed ID: 4690598
    [No Abstract]   [Full Text] [Related]  

  • 8. Mitochondrial glutamate aspartate transaminase. Differential action of thiol reagents with the supernatant enzyme.
    Stankewicz MJ; Cheng S; Martinez-Carrion M
    Biochemistry; 1971 Jul; 10(15):2877-84. PubMed ID: 5114530
    [No Abstract]   [Full Text] [Related]  

  • 9. Mechanism of the irreversible inhibition of aspartate aminotransferase by the bacterial toxin L-2-amino-4-methoxy-trans-3-butenoic acid.
    Rando RR; Relyea N; Cheng L
    J Biol Chem; 1976 Jun; 251(11):3306-12. PubMed ID: 6451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The isozymes of glutamate-aspartate transaminase. Mechanism of inhibition of dicarboxylic acids.
    Michuda CM; Martinez-Carrion M
    J Biol Chem; 1970 Jan; 245(2):262-9. PubMed ID: 4312670
    [No Abstract]   [Full Text] [Related]  

  • 11. Pyridoxal phosphate. 5. 2-Formylethynylphosphonic acid and 2-formylethylphosphonic acid, potent inhibitors of pyridoxal phosphate binding and probes of enzyme topography.
    Rudinskas AJ; Hullar TL
    J Med Chem; 1976 Dec; 19(12):1367-71. PubMed ID: 1003421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Irreversible inhibition of aspartate aminotransferase by 2-amino-3-butenoic acid.
    Rando RR
    Biochemistry; 1974 Sep; 13(19):3859-63. PubMed ID: 4472160
    [No Abstract]   [Full Text] [Related]  

  • 13. The synthesis and properties of phosphopyridoxyl amino acids.
    Severin ES; Gulyaev NN; Khurs EN; Khomutov RM
    Biochem Biophys Res Commun; 1969 May; 35(3):318-23. PubMed ID: 4389226
    [No Abstract]   [Full Text] [Related]  

  • 14. Reversible modification of amino groups in aspartate aminotransferase.
    Gilbert HF; O'Leary MH
    Biochim Biophys Acta; 1977 Jul; 483(1):79-89. PubMed ID: 18199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding of pyridoxal phosphate N-oxide to mitochondrial and cytoplasmic aspartate aminotransferases and some characteristics of the resulting artificial holoenzymes.
    Masugi F; Natori Y; Shimizu S; Fukui S
    J Nutr Sci Vitaminol (Tokyo); 1973; 19(1):55-70. PubMed ID: 4784016
    [No Abstract]   [Full Text] [Related]  

  • 16. [Binding of phosphopyridoxyl derivatives to apoaspartate aminotransferase from wheat germ].
    Orlacchio A; Borri-Voltattorni C; Scatamuzza E; Turano C
    Boll Soc Ital Biol Sper; 1974 Dec; 50(23-24):2015-9. PubMed ID: 4464908
    [No Abstract]   [Full Text] [Related]  

  • 17. Cooperative and non-cooperative effects in the binding of coenzyme to mitochondrial and cytosolic Apo-aspartate aminotransferase.
    Garzillo AM; Marino G; Pispisa B
    Prog Clin Biol Res; 1984; 144B():137-44. PubMed ID: 6718396
    [No Abstract]   [Full Text] [Related]  

  • 18. Recent advances in the study of coenzyme binding to aspartate apoaminotransferases.
    Turano C; Riva F; Giartosio A
    Adv Exp Med Biol; 1982; 148():283-93. PubMed ID: 7124523
    [No Abstract]   [Full Text] [Related]  

  • 19. Probing the active sites of aspartate: 2-oxoglutarate aminotransferases from Trichomonas vaginalis and pig heart cytoplasm using substrate analogues.
    Lowe PN; Rowe AF
    Comp Biochem Physiol B; 1987; 88(1):223-7. PubMed ID: 3500014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of anions on the substrate affinities of the pyridoxal and pyridoxamine forms of mitochondrial and supernatant aspartate transaminases.
    Cheng S; Michuda-Kozak C; Martinez-Carrion M
    J Biol Chem; 1971 Jun; 246(11):3623-30. PubMed ID: 5578911
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.