These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 2367559)

  • 1. Electrochemical luminescence with N(5)-ethyl-4a-hydroxy-3-methyl-4a, 5-dihydrolumiflavin. The mechanism of bacterial luciferase.
    Kaaret TW; Bruice TC
    Photochem Photobiol; 1990 May; 51(5):629-33. PubMed ID: 2367559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dithionite treatment of flavins: spectral evidence for covalent adduct formation and effect on in vitro bacterial bioluminescence.
    Mager HI; Tu SC
    Photochem Photobiol; 1990 Feb; 51(2):223-9. PubMed ID: 2333335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics.
    Eckstein JW; Hastings JW; Ghisla S
    Biochemistry; 1993 Jan; 32(2):404-11. PubMed ID: 8422349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5'-phosphate as a model.
    Lei B; Ding Q; Tu SC
    Biochemistry; 2004 Dec; 43(50):15975-82. PubMed ID: 15595854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of N(5)-ethyl-flavinium cation formation upon electrochemical oxidation of N(5)-ethyl-4a-hydroxyflavin pseudobase.
    Sichula V; Hu Y; Mirzakulova E; Manzer SF; Vyas S; Hadad CM; Glusac KD
    J Phys Chem B; 2010 Jul; 114(29):9452-61. PubMed ID: 20597524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacterial luciferase 4a-hydroperoxyflavin intermediates: stabilization, isolation, and properties.
    Tu SC
    Methods Enzymol; 1986; 133():128-39. PubMed ID: 3821532
    [No Abstract]   [Full Text] [Related]  

  • 7. Electrochemical superoxidation of flavins: generation of active precursors in luminescent model systems.
    Mager HI; Tu SC; Liu YH; Deng YJ; Kadish KM
    Photochem Photobiol; 1990 Nov; 52(5):1049-56. PubMed ID: 1962857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steady-state bioluminescence of bacterial luciferase using electrochemical regeneration of flavin substrate and its application to inhibitory analysis.
    Yamasaki S; Nakashima S; Yamada S; Takehara K
    Bioelectrochemistry; 2009 Apr; 75(1):67-70. PubMed ID: 19162563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral detection of an intermediate preceding the excited state in the bacterial luciferase reaction.
    Macheroux P; Ghisla S; Hastings JW
    Biochemistry; 1993 Dec; 32(51):14183-6. PubMed ID: 8260504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent polyene aliphatics as spectroscopic and mechanistic probes for bacterial luciferase: evidence against carbonyl product from aldehyde as the primary excited species.
    Cho KW; Tu SC; Shao R
    Photochem Photobiol; 1993 Feb; 57(2):396-402. PubMed ID: 8451303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and properties of bacterial luciferase intermediates containing different oxygenated flavins.
    Tu SC
    J Biol Chem; 1982 Apr; 257(7):3719-25. PubMed ID: 7061505
    [No Abstract]   [Full Text] [Related]  

  • 12. Computational analysis of the oxygen addition at the C4a site of reduced flavin in the bacterial luciferase bioluminescence reaction.
    Wada N; Sugimoto T; Watanabe H; Tu SC
    Photochem Photobiol; 1999 Jul; 70(1):116-22. PubMed ID: 10420850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A conical intersection controls the deactivation of the bacterial luciferase fluorophore.
    Gozem S; Mirzakulova E; Schapiro I; Melaccio F; Glusac KD; Olivucci M
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9870-5. PubMed ID: 25045117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of mutations of the alpha His45 residue of Vibrio harveyi luciferase on the yield and reactivity of the flavin peroxide intermediate.
    Li H; Ortego BC; Maillard KI; Willson RC; Tu SC
    Biochemistry; 1999 Apr; 38(14):4409-15. PubMed ID: 10194361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical modification and characterization of the alpha cysteine 106 at the Vibrio harveyi luciferase active center.
    Paquatte O; Tu SC
    Photochem Photobiol; 1989 Dec; 50(6):817-25. PubMed ID: 2626493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple synthesis of a 4a-hydroperoxy adduct of a 1,5-dihydroflavine: preliminary studies of a model for bacterial luciferase.
    Kemal C; Bruice TC
    Proc Natl Acad Sci U S A; 1976 Apr; 73(4):995-9. PubMed ID: 1063419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of iodide on the fluorescence and activity of the hydroperoxyflavin intermediate of Vibrio harveyi luciferase.
    Huang S; Tu SC
    Photochem Photobiol; 2005; 81(2):425-30. PubMed ID: 15588123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide anion reacts with enzyme intermediate in the bacterial luciferase reaction competitive with intramolecular electron transfer.
    Wada N; Hastings JW; Watanabe H
    J Biolumin Chemilumin; 1997; 12(1):15-20. PubMed ID: 9315953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant.
    Huang S; Tu SC
    Biochemistry; 1997 Dec; 36(48):14609-15. PubMed ID: 9402752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and properties of bacterial luciferase-oxygenated flavin intermediate complexed with long-chain alcohols.
    Tu SC
    Biochemistry; 1979 Dec; 18(26):5940-5. PubMed ID: 316337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.