These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23675625)

  • 1. Tuning, coupling and matching of a resonant cavity in microwave exposure system for biological objects.
    Atanasova G; Atanasov N
    Electromagn Biol Med; 2013 Jun; 32(2):218-25. PubMed ID: 23675625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of two stacked cylindrical dielectric resonators in a TE₁₀₂ microwave cavity for magnetic resonance spectroscopy.
    Mattar SM; Elnaggar SY
    J Magn Reson; 2011 Apr; 209(2):174-82. PubMed ID: 21300559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tunable general purpose Q-band resonator for CW and pulse EPR/ENDOR experiments with large sample access and optical excitation.
    Reijerse E; Lendzian F; Isaacson R; Lubitz W
    J Magn Reson; 2012 Jan; 214(1):237-43. PubMed ID: 22196894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory.
    Elnaggar SY; Tervo R; Mattar SM
    J Magn Reson; 2014 Jan; 238():1-7. PubMed ID: 24246950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resonant microwave cavity for 8.5-12 GHz optically detected electron spin resonance with simultaneous nuclear magnetic resonance.
    Colton JS; Wienkes LR
    Rev Sci Instrum; 2009 Mar; 80(3):035106. PubMed ID: 19334951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable microwave coaxial cavity plasma system at atmospheric pressure.
    Song H; Hong JM; Lee KH; Choi JJ
    Rev Sci Instrum; 2008 May; 79(5):054702. PubMed ID: 18513083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A doubly resonant cavity for detection of RF demodulation by living cells.
    Balzano Q; Hodzic V; Gammon RW; Davis CC
    Bioelectromagnetics; 2008 Feb; 29(2):81-91. PubMed ID: 17902156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and realization of the microwave cavity in the PTB caesium atomic fountain clock CSF1.
    Schröder R; Hübner U; Griebsch D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Mar; 49(3):383-92. PubMed ID: 12322889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved coupling design for high-frequency TE011 electron paramagnetic resonance cavities.
    Savitsky A; Grishin Y; Rakhmatullin R; Reijerse E; Lubitz W
    Rev Sci Instrum; 2013 Jan; 84(1):014704. PubMed ID: 23387676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of the effect of superparamagnetic nanoparticles on microwave rewarming of cryopreserved tissues.
    Wang T; Zhao G; Liang XM; Xu Y; Li Y; Tang H; Jiang R; Gao D
    Cryobiology; 2014 Apr; 68(2):234-43. PubMed ID: 24530372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NUMERICAL SIMULATION ON MICROWAVE REWARMING OF CRYOPRESERVED RABBIT KIDNEY WITH EMBEDDED SUPERPARAMAGNETIC NANOPARTICLES.
    Wang T; Zhao G
    Cryo Letters; 2015; 36(3):213-20. PubMed ID: 26510340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A radio-frequency system for in vivo pilot experiments aimed at the studies on biological effects of electromagnetic fields.
    Ardoino L; Lopresto V; Mancini S; Marino C; Pinto R; Lovisolo GA
    Phys Med Biol; 2005 Aug; 50(15):3643-54. PubMed ID: 16030388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cylindrical Cavity Sensor for Distinction of Various Driveability Index Gasoline with Temperature Robustness.
    Lee CH; Jeong YS; Ashraf H
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31653036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrically detected magnetic resonance signal intensity at resonant frequencies from 300 to 900 MHz in a constant microwave field.
    Sato T; Yokoyama H; Ohya H; Kamada H
    J Magn Reson; 1999 Aug; 139(2):422-9. PubMed ID: 10423380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective coupling of a macroscopic number of single-molecule magnets with a microwave cavity mode.
    Eddins AW; Beedle CC; Hendrickson DN; Friedman JR
    Phys Rev Lett; 2014 Mar; 112(12):120501. PubMed ID: 24724636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel scaling law relating the geometrical dimensions of a photocathode radio frequency gun to its radio frequency properties.
    Lal S; Pant KK; Krishnagopal S
    Rev Sci Instrum; 2011 Dec; 82(12):123304. PubMed ID: 22225212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Note: Design and resonant condition measurement of the mushroom-shaped Al test cavity for critical magnetic field evaluation of superconducting thin-film sample.
    Oikawa H; Higashiguchi T; Hayano H
    Rev Sci Instrum; 2018 Jul; 89(7):076102. PubMed ID: 30068142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip integration of high-frequency electron paramagnetic resonance spectroscopy and Hall-effect magnetometry.
    Quddusi HM; Ramsey CM; Gonzalez-Pons JC; Henderson JJ; del Barco E; de Loubens G; Kent AD
    Rev Sci Instrum; 2008 Jul; 79(7):074703. PubMed ID: 18681725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wideband energy harvesting for piezoelectric devices with linear resonant behavior.
    Luo C; Hofmann HF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1294-301. PubMed ID: 21768014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noninvasive in vitro measurement of pig-blood d-glucose by using a microwave cavity sensor.
    Kim S; Melikyan H; Kim J; Babajanyan A; Lee JH; Enkhtur L; Friedman B; Lee K
    Diabetes Res Clin Pract; 2012 Jun; 96(3):379-84. PubMed ID: 22305939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.