These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23675878)

  • 1. Differentiating microbial forensic qPCR target and control products by electrospray ionization mass spectrometry.
    Motley ST; Redden CL; Sannes-Lowery KA; Eshoo MW; Hofstadler SA; Burans JP; Rosovitz MJ
    Biosecur Bioterror; 2013 Jun; 11(2):107-17. PubMed ID: 23675878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base composition analysis of human mitochondrial DNA using electrospray ionization mass spectrometry: a novel tool for the identification and differentiation of humans.
    Hall TA; Budowle B; Jiang Y; Blyn L; Eshoo M; Sannes-Lowery KA; Sampath R; Drader JJ; Hannis JC; Harrell P; Samant V; White N; Ecker DJ; Hofstadler SA
    Anal Biochem; 2005 Sep; 344(1):53-69. PubMed ID: 16054106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reverse transcription-PCR-electrospray ionization mass spectrometry for rapid detection of biothreat and common respiratory pathogens.
    Jeng K; Hardick J; Rothman R; Yang S; Won H; Peterson S; Hsieh YH; Masek BJ; Carroll KC; Gaydos CA
    J Clin Microbiol; 2013 Oct; 51(10):3300-7. PubMed ID: 23903543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a nested PCR assay for detection of Streptococcus equi subspecies equi in clinical equine specimens and comparison with a qPCR assay.
    Noll LW; Stoy CPA; Wang Y; Porter EG; Lu N; Liu X; Burklund A; Peddireddi L; Hanzlicek G; Henningson J; Chengappa MM; Bai J
    J Microbiol Methods; 2020 May; 172():105887. PubMed ID: 32165161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive biothreat cluster identification by PCR/electrospray-ionization mass spectrometry.
    Sampath R; Mulholland N; Blyn LB; Massire C; Whitehouse CA; Waybright N; Harter C; Bogan J; Miranda MS; Smith D; Baldwin C; Wolcott M; Norwood D; Kreft R; Frinder M; Lovari R; Yasuda I; Matthews H; Toleno D; Housley R; Duncan D; Li F; Warren R; Eshoo MW; Hall TA; Hofstadler SA; Ecker DJ
    PLoS One; 2012; 7(6):e36528. PubMed ID: 22768032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stable and differentiable RNA positive control for reverse transcription-polymerase chain reaction.
    Chen JM; Guo LX; Sun CY; Sun YX; Chen JW; Li L; Wang ZL
    Biotechnol Lett; 2006 Nov; 28(22):1787-92. PubMed ID: 16912918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of three triplex real-time reverse transcription PCR assays for the qualitative molecular typing of the nine serotypes of African horse sickness virus.
    Weyer CT; Joone C; Lourens CW; Monyai MS; Koekemoer O; Grewar JD; van Schalkwyk A; Majiwa PO; MacLachlan NJ; Guthrie AJ
    J Virol Methods; 2015 Oct; 223():69-74. PubMed ID: 26232526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of bacterial plant pathogens using multilocus polymerase chain reaction/electrospray ionization-mass spectrometry.
    Postinikova E; Baldwin C; Whitehouse CA; Sechler A; Schaad NW; Sampath R; Harpin V; Li F; Melton R; Blyn L; Drader J; Hofstadler S; Schneider WL
    Phytopathology; 2008 Nov; 98(11):1156-64. PubMed ID: 18943403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Profiling 627 mitochondrial nucleotides via the analysis of a 23-plex polymerase chain reaction by liquid chromatography-electrospray ionization time-of-flight mass spectrometry.
    Oberacher H; Niederstätter H; Pitterl F; Parson W
    Anal Chem; 2006 Nov; 78(22):7816-27. PubMed ID: 17105176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the rapid detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus.
    Osman F; Hodzic E; Kwon SJ; Wang J; Vidalakis G
    J Virol Methods; 2015 Aug; 220():64-75. PubMed ID: 25907469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel real-time polymerase chain reaction assay for the quantitative detection of Nipah virus replicative viral RNA.
    Jensen KS; Adams R; Bennett RS; Bernbaum J; Jahrling PB; Holbrook MR
    PLoS One; 2018; 13(6):e0199534. PubMed ID: 29920552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Application of RT-qPCR in the Study of Forensic Pathology].
    Du SH; Li DR; Wang HJ; Wang Q
    Fa Yi Xue Za Zhi; 2017 Oct; 33(5):526-531. PubMed ID: 29275561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time reverse transcriptase polymerase chain reaction assays for Middle East Respiratory Syndrome.
    Douglas CE; Kulesh DA; Jaissle JG; Minogue TD
    Mol Cell Probes; 2015 Dec; 29(6):511-513. PubMed ID: 26365228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of real-time reverse transcriptase qPCR assays for the detection of Punta Toro virus and Pichinde virus.
    Stefan CP; Chase K; Coyne S; Kulesh DA; Minogue TD; Koehler JW
    Virol J; 2016 Mar; 13():54. PubMed ID: 27029488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection and identification of viral pathogens in patients with hand, foot, and mouth disease by multilocus PCR, reverse-transcription PCR and electrospray ionization mass spectrometry.
    Chen J; Fu Y; Ju L; Miao X; Shen Y; He L; Wang W; Jin J; Shao L; Sampath R; Ecker DJ; Zhang Y; Li M; Cheng X; Zhang W
    J Clin Virol; 2014 Feb; 59(2):115-9. PubMed ID: 24365476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time reverse-transcription polymerase chain reaction assays.
    Choudhary N; Wei G; Govindarajulu A; Roy A; Li W; Picton DD; Nakhla MK; Levy L; Brlansky RH
    J Virol Methods; 2015 Nov; 224():105-9. PubMed ID: 26341059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid identification viruses from nasal pharyngeal aspirates in acute viral respiratory infections by RT-PCR and electrospray ionization mass spectrometry.
    Chen KF; Rothman RE; Ramachandran P; Blyn L; Sampath R; Ecker DJ; Valsamakis A; Gaydos CA
    J Virol Methods; 2011 Apr; 173(1):60-6. PubMed ID: 21256867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous detection of bluetongue virus RNA, internal control GAPDH mRNA, and external control synthetic RNA by multiplex real-time PCR.
    Vandenbussche F; Vandemeulebroucke E; De Clercq K
    Methods Mol Biol; 2010; 630():97-108. PubMed ID: 20300993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific detection of Nipah virus using real-time RT-PCR (TaqMan).
    Guillaume V; Lefeuvre A; Faure C; Marianneau P; Buckland R; Lam SK; Wild TF; Deubel V
    J Virol Methods; 2004 Sep; 120(2):229-37. PubMed ID: 15288966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of novel AllGlo-probe-based one-step multiplex qRT-PCR assay for rapid identification of avian influenza virus H7N9.
    Zhang Y; Mao H; Yan J; Wang X; Zhang L; Guus K; Li H; Li Z; Chen Y; Gong L; Chen Z; Xia S
    Arch Virol; 2014 Jul; 159(7):1707-13. PubMed ID: 24473706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.