These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 23675916)
1. Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Richard I; Thibault M; De Crescenzo G; Buschmann MD; Lavertu M Biomacromolecules; 2013 Jun; 14(6):1732-40. PubMed ID: 23675916 [TBL] [Abstract][Full Text] [Related]
2. Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis. Akinc A; Thomas M; Klibanov AM; Langer R J Gene Med; 2005 May; 7(5):657-63. PubMed ID: 15543529 [TBL] [Abstract][Full Text] [Related]
3. Tuning the buffering capacity of polyethylenimine with glycerol molecules for efficient gene delivery: staying in or out of the endosomes. Singh B; Maharjan S; Park TE; Jiang T; Kang SK; Choi YJ; Cho CS Macromol Biosci; 2015 May; 15(5):622-35. PubMed ID: 25581293 [TBL] [Abstract][Full Text] [Related]
4. Efficient gene delivery using chitosan-polyethylenimine hybrid systems. Jiang HL; Kim TH; Kim YK; Park IY; Cho MH; Cho CS Biomed Mater; 2008 Jun; 3(2):025013. PubMed ID: 18477817 [TBL] [Abstract][Full Text] [Related]
5. Chemistry specificity of DNA-polycation complex salt response: a simulation study of DNA, polylysine and polyethyleneimine. Antila HS; Härkönen M; Sammalkorpi M Phys Chem Chem Phys; 2015 Feb; 17(7):5279-89. PubMed ID: 25607687 [TBL] [Abstract][Full Text] [Related]
6. The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH. Benjaminsen RV; Mattebjerg MA; Henriksen JR; Moghimi SM; Andresen TL Mol Ther; 2013 Jan; 21(1):149-57. PubMed ID: 23032976 [TBL] [Abstract][Full Text] [Related]
7. Multilayered polyplexes with the endosomal buffering polycation in the core and the cell uptake-favorable polycation in the outer layer for enhanced gene delivery. Ke JH; Young TH Biomaterials; 2010 Dec; 31(35):9366-72. PubMed ID: 20864166 [TBL] [Abstract][Full Text] [Related]
8. Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine-DNA polyplexes. Sonawane ND; Szoka FC; Verkman AS J Biol Chem; 2003 Nov; 278(45):44826-31. PubMed ID: 12944394 [TBL] [Abstract][Full Text] [Related]
9. Linear polyethylenimine-graft-chitosan copolymers as efficient DNA/siRNA delivery vectors in vitro and in vivo. Tripathi SK; Goyal R; Kumar P; Gupta KC Nanomedicine; 2012 Apr; 8(3):337-45. PubMed ID: 21756861 [TBL] [Abstract][Full Text] [Related]
10. Influence of chitosan structure on the formation and stability of DNA-chitosan polyelectrolyte complexes. Strand SP; Danielsen S; Christensen BE; Vårum KM Biomacromolecules; 2005; 6(6):3357-66. PubMed ID: 16283766 [TBL] [Abstract][Full Text] [Related]
11. Biodegradable poly(ester amine) based on glycerol dimethacrylate and polyethylenimine as a gene carrier. Arote RB; Hwang SK; Yoo MK; Jere D; Jiang HL; Kim YK; Choi YJ; Nah JW; Cho MH; Cho CS J Gene Med; 2008 Nov; 10(11):1223-35. PubMed ID: 18773499 [TBL] [Abstract][Full Text] [Related]
12. Lysosomal Proton Buffering of Poly(ethylenimine) Measured Roy S; Zhu D; Parak WJ; Feliu N ACS Nano; 2020 Jul; 14(7):8012-8023. PubMed ID: 32568521 [TBL] [Abstract][Full Text] [Related]
13. Gene delivery efficacy of polyethyleneimine-introduced chitosan shell/poly(methyl methacrylate) core nanoparticles for rat mesenchymal stem cells. Pimpha N; Sunintaboon P; Inphonlek S; Tabata Y J Biomater Sci Polym Ed; 2010; 21(2):205-23. PubMed ID: 20092685 [TBL] [Abstract][Full Text] [Related]
14. C- versus N-terminally linked melittin-polyethylenimine conjugates: the site of linkage strongly influences activity of DNA polyplexes. Boeckle S; Wagner E; Ogris M J Gene Med; 2005 Oct; 7(10):1335-47. PubMed ID: 15945120 [TBL] [Abstract][Full Text] [Related]
15. Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: properties and in vitro transfection studies. Lu B; Xu XD; Zhang XZ; Cheng SX; Zhuo RX Biomacromolecules; 2008 Oct; 9(10):2594-600. PubMed ID: 18698817 [TBL] [Abstract][Full Text] [Related]
16. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo. Wong K; Sun G; Zhang X; Dai H; Liu Y; He C; Leong KW Bioconjug Chem; 2006; 17(1):152-8. PubMed ID: 16417264 [TBL] [Abstract][Full Text] [Related]
17. Mannosylated chitosan-graft-polyethylenimine as a gene carrier for Raw 264.7 cell targeting. Jiang HL; Kim YK; Arote R; Jere D; Quan JS; Yu JH; Choi YJ; Nah JW; Cho MH; Cho CS Int J Pharm; 2009 Jun; 375(1-2):133-9. PubMed ID: 19481699 [TBL] [Abstract][Full Text] [Related]
18. Chitosan-graft-polyethylenimine as a gene carrier. Jiang HL; Kim YK; Arote R; Nah JW; Cho MH; Choi YJ; Akaike T; Cho CS J Control Release; 2007 Feb; 117(2):273-80. PubMed ID: 17166614 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of polyplex- and lipoplex-mediated delivery of nucleic acids: real-time visualization of transient membrane destabilization without endosomal lysis. ur Rehman Z; Hoekstra D; Zuhorn IS ACS Nano; 2013 May; 7(5):3767-77. PubMed ID: 23597090 [TBL] [Abstract][Full Text] [Related]
20. Release of cationic polymer-DNA complexes from the endosome: A theoretical investigation of the proton sponge hypothesis. Yang S; May S J Chem Phys; 2008 Nov; 129(18):185105. PubMed ID: 19045433 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]