These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 23676031)

  • 1. Steady-state simulation of metastable stochastic chemical systems.
    Milias-Argeitis A; Lygeros J
    J Chem Phys; 2013 May; 138(18):184109. PubMed ID: 23676031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nested stochastic simulation algorithm for chemical kinetic systems with disparate rates.
    E W; Liu D; Vanden-Eijnden E
    J Chem Phys; 2005 Nov; 123(19):194107. PubMed ID: 16321076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model reduction for slow-fast stochastic systems with metastable behaviour.
    Bruna M; Chapman SJ; Smith MJ
    J Chem Phys; 2014 May; 140(17):174107. PubMed ID: 24811625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cutoff phenomenon in accelerated stochastic simulations of chemical kinetics via flow averaging (FLAVOR-SSA).
    Bayati B; Owhadi H; Koumoutsakos P
    J Chem Phys; 2010 Dec; 133(24):244117. PubMed ID: 21197986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming stiffness in stochastic simulation stemming from partial equilibrium: a multiscale Monte Carlo algorithm.
    Samant A; Vlachos DG
    J Chem Phys; 2005 Oct; 123(14):144114. PubMed ID: 16238381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions.
    Salis H; Kaznessis Y
    J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic analysis of a miRNA-protein toggle switch.
    Giampieri E; Remondini D; de Oliveira L; Castellani G; LiĆ³ P
    Mol Biosyst; 2011 Oct; 7(10):2796-803. PubMed ID: 21717010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The sorting direct method for stochastic simulation of biochemical systems with varying reaction execution behavior.
    McCollum JM; Peterson GD; Cox CD; Simpson ML; Samatova NF
    Comput Biol Chem; 2006 Feb; 30(1):39-49. PubMed ID: 16321569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-stationary forward flux sampling.
    Becker NB; Allen RJ; ten Wolde PR
    J Chem Phys; 2012 May; 136(17):174118. PubMed ID: 22583221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast variance reduction for steady-state simulation and sensitivity analysis of stochastic chemical systems using shadow function estimators.
    Milias-Argeitis A; Lygeros J; Khammash M
    J Chem Phys; 2014 Jul; 141(2):024104. PubMed ID: 25027996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasiequilibrium approximation of fast reaction kinetics in stochastic biochemical systems.
    Goutsias J
    J Chem Phys; 2005 May; 122(18):184102. PubMed ID: 15918689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constrained approach to multiscale stochastic simulation of chemically reacting systems.
    Cotter SL; Zygalakis KC; Kevrekidis IG; Erban R
    J Chem Phys; 2011 Sep; 135(9):094102. PubMed ID: 21913748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise can speed convergence in Markov chains.
    Franzke B; Kosko B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041112. PubMed ID: 22181092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dominated coupling from the past algorithm for the stochastic simulation of networks of biochemical reactions.
    Hemberg M; Barahona M
    BMC Syst Biol; 2008 May; 2():42. PubMed ID: 18466612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An approximation method for solving the steady-state probability distribution of probabilistic Boolean networks.
    Ching WK; Zhang S; Ng MK; Akutsu T
    Bioinformatics; 2007 Jun; 23(12):1511-8. PubMed ID: 17463027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact stochastic simulation of coupled chemical reactions with delays.
    Cai X
    J Chem Phys; 2007 Mar; 126(12):124108. PubMed ID: 17411109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient stochastic sampling of first-passage times with applications to self-assembly simulations.
    Misra N; Schwartz R
    J Chem Phys; 2008 Nov; 129(20):204109. PubMed ID: 19045854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations.
    Wu F; Tian T; Rawlings JB; Yin G
    J Chem Phys; 2016 May; 144(17):174112. PubMed ID: 27155630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.