These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 23676053)

  • 1. Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions.
    Aliotta F; Giaquinta PV; Pochylski M; Ponterio RC; Prestipino S; Saija F; Vasi C
    J Chem Phys; 2013 May; 138(18):184504. PubMed ID: 23676053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous freezing of supercooled water under isochoric and adiabatic conditions.
    Prestipino S; Giaquinta PV
    J Phys Chem B; 2013 Jul; 117(27):8189-95. PubMed ID: 23799647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Externally applied electric fields up to 1.6 × 10(5) V/m do not affect the homogeneous nucleation of ice in supercooled water.
    Stan CA; Tang SK; Bishop KJ; Whitesides GM
    J Phys Chem B; 2011 Feb; 115(5):1089-97. PubMed ID: 21174462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions.
    Koop T; Luo B; Tsias A; Peter T
    Nature; 2000 Aug; 406(6796):611-4. PubMed ID: 10949298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat of freezing for supercooled water: measurements at atmospheric pressure.
    Cantrell W; Kostinski A; Szedlak A; Johnson A
    J Phys Chem A; 2011 Jun; 115(23):5729-34. PubMed ID: 21087023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metastable states of water and ice during pressure-supported freezing of potato tissue.
    Schlüter O; Benet GU; Heinz V; Knorr D
    Biotechnol Prog; 2004; 20(3):799-810. PubMed ID: 15176885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and FTIR studies of supercooled water confined to exterior and interior of mesoporous MCM-41.
    Kittaka S; Sou K; Yamaguchi T; Tozaki K
    Phys Chem Chem Phys; 2009 Oct; 11(38):8538-43. PubMed ID: 19774285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New metastable form of ice and its role in the homogeneous crystallization of water.
    Russo J; Romano F; Tanaka H
    Nat Mater; 2014 Jul; 13(7):733-9. PubMed ID: 24836734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initiation of the ice phase by marine biogenic surfaces in supersaturated gas and supercooled aqueous phases.
    Alpert PA; Aller JY; Knopf DA
    Phys Chem Chem Phys; 2011 Nov; 13(44):19882-94. PubMed ID: 21912788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A maximum-entropy approach to the adiabatic freezing of a supercooled liquid.
    Prestipino S
    J Chem Phys; 2013 Apr; 138(16):164501. PubMed ID: 23635151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The homogeneous ice nucleation rate of water droplets produced in a microfluidic device and the role of temperature uncertainty.
    Riechers B; Wittbracht F; Hütten A; Koop T
    Phys Chem Chem Phys; 2013 Apr; 15(16):5873-87. PubMed ID: 23486888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of ice nucleation in liquid water.
    Wang X; Wang S; Xu Q; Mi J
    J Phys Chem B; 2015 Jan; 119(4):1660-8. PubMed ID: 25546012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of surface charges for homogeneous freezing of supercooled water microdroplets.
    Rzesanke D; Nadolny J; Duft D; Müller R; Kiselev A; Leisner T
    Phys Chem Chem Phys; 2012 Jul; 14(26):9359-63. PubMed ID: 22294097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metastable liquid-liquid transition in a molecular model of water.
    Palmer JC; Martelli F; Liu Y; Car R; Panagiotopoulos AZ; Debenedetti PG
    Nature; 2014 Jun; 510(7505):385-8. PubMed ID: 24943954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations.
    Weiss VC; Rullich M; Köhler C; Frauenheim T
    J Chem Phys; 2011 Jul; 135(3):034701. PubMed ID: 21787017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic aspects of vitrification.
    Wowk B
    Cryobiology; 2010 Feb; 60(1):11-22. PubMed ID: 19538955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies of cavitation and ice nucleation in 'doubly-metastable' water: time-lapse photography and neutron diffraction.
    Barrow MS; Williams PR; Chan HH; Dore JC; Bellissent-Funel MC
    Phys Chem Chem Phys; 2012 Oct; 14(38):13255-61. PubMed ID: 22918522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.