These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 23676117)
41. Effect of hydrogen bond strength on the redox properties of phylloquinones: a two-dimensional hyperfine sublevel correlation spectroscopy study of photosystem I. Srinivasan N; Chatterjee R; Milikisiyants S; Golbeck JH; Lakshmi KV Biochemistry; 2011 May; 50(17):3495-501. PubMed ID: 21476509 [TBL] [Abstract][Full Text] [Related]
42. Effect of hydroxy substituent on the prooxidant action of naphthoquinone compounds. Murakami K; Haneda M; Iwata S; Yoshino M Toxicol In Vitro; 2010 Apr; 24(3):905-9. PubMed ID: 19961919 [TBL] [Abstract][Full Text] [Related]
43. Low-temperature interquinone electron transfer in photosynthetic reaction centers from Rhodobacter sphaeroides and Blastochloris viridis: characterization of Q(B)- states by high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR). Utschig LM; Thurnauer MC; Tiede DM; Poluektov OG Biochemistry; 2005 Nov; 44(43):14131-42. PubMed ID: 16245929 [TBL] [Abstract][Full Text] [Related]
44. Time-resolved FTIR difference spectroscopy for the study of photosystem I with high potential naphthoquinones incorporated into the A Agarwala N; Makita H; Hastings G Biochim Biophys Acta Bioenerg; 2023 Jan; 1864(1):148918. PubMed ID: 36116485 [TBL] [Abstract][Full Text] [Related]
46. Measuring the relative hydrogen-bonding strengths of alcohols in aprotic organic solvents. Tessensohn ME; Lee M; Hirao H; Webster RD Chemphyschem; 2015 Jan; 16(1):160-8. PubMed ID: 25418984 [TBL] [Abstract][Full Text] [Related]
47. Conjugation paths in monosubstituted 1,2- and 2,3-naphthoquinones. Shahamirian M; Cyrański MK; Krygowski TM J Phys Chem A; 2011 Nov; 115(45):12688-94. PubMed ID: 21899324 [TBL] [Abstract][Full Text] [Related]
48. The chemical biology of naphthoquinones and its environmental implications. Kumagai Y; Shinkai Y; Miura T; Cho AK Annu Rev Pharmacol Toxicol; 2012; 52():221-47. PubMed ID: 21942631 [TBL] [Abstract][Full Text] [Related]
49. Electrochemical and theoretical analysis of the reactivity of shikonin derivatives: dissociative electron transfer in esterified compounds. Armendáriz-Vidales G; Frontana C Org Biomol Chem; 2014 Sep; 12(33):6393-8. PubMed ID: 25007856 [TBL] [Abstract][Full Text] [Related]
50. A relationship between amide hydrogen bond strength and quinone reduction potential: implications for photosystem I and bacterial reaction center quinone function. Feldman KS; Hester DK; Golbeck JH Bioorg Med Chem Lett; 2007 Sep; 17(17):4891-4. PubMed ID: 17596943 [TBL] [Abstract][Full Text] [Related]
51. NMR studies of coupled low- and high-barrier hydrogen bonds in pyridoxal-5'-phosphate model systems in polar solution. Sharif S; Denisov GS; Toney MD; Limbach HH J Am Chem Soc; 2007 May; 129(19):6313-27. PubMed ID: 17455937 [TBL] [Abstract][Full Text] [Related]
53. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102. Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118 [TBL] [Abstract][Full Text] [Related]
54. Time-resolved FTIR difference spectroscopy for the study of photosystem I with high potential naphthoquinones incorporated into the A Agarwala N; Hastings G Photosynth Res; 2023 Oct; 158(1):1-11. PubMed ID: 37477846 [TBL] [Abstract][Full Text] [Related]
55. Functionalized oxatriquinanes and their structural equilibrium in protic solvent. Suzuki H; Muratake H Chem Pharm Bull (Tokyo); 2014; 62(9):921-6. PubMed ID: 25007813 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of the reported structure of crassiflorone, a naturally occurring quinone isolated from the African ebony Diospyros crassiflora, and regioisomeric pentacyclic furocoumarin naphthoquinones. Padwal J; Lewis W; Moody CJ Org Biomol Chem; 2011 May; 9(9):3484-93. PubMed ID: 21409280 [TBL] [Abstract][Full Text] [Related]
57. Naphthoquinones and derivatives as potential anticancer agents: An updated review. Rahman MM; Islam MR; Akash S; Shohag S; Ahmed L; Supti FA; Rauf A; Aljohani ASM; Al Abdulmonem W; Khalil AA; Sharma R; Thiruvengadam M Chem Biol Interact; 2022 Dec; 368():110198. PubMed ID: 36179774 [TBL] [Abstract][Full Text] [Related]
58. Protection or cytotoxicity mediated by a novel quinonoid-polyphenol compound? Milackova I; Rackova L; Majekova M; Mrvova N; Stefek M Gen Physiol Biophys; 2015 Jan; 34(1):51-64. PubMed ID: 25367759 [TBL] [Abstract][Full Text] [Related]
59. Quinones: Biosynthesis, Characterization of Gomes de Carvalho NK; Wellisson da Silva Mendes J; Martins da Costa JG Chem Biodivers; 2023 Dec; 20(12):e202301365. PubMed ID: 37926679 [TBL] [Abstract][Full Text] [Related]
60. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid. Lichtenstein BR; Bialas C; Cerda JF; Fry BA; Dutton PL; Moser CC Angew Chem Int Ed Engl; 2015 Nov; 54(46):13626-9. PubMed ID: 26366882 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]