These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23676384)

  • 1. Aeration tank settling and real time control as a tool to improve the hydraulic capacity and treatment efficiency during wet weather: results from 7 years' full-scale operational data.
    Sharma AK; Guildal T; Thomsen HA; Mikkelsen PS; Jacobsen BN
    Water Sci Technol; 2013; 67(10):2169-76. PubMed ID: 23676384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation principles suspended solids distribution modelling to support ATS introduction on a recirculating WWTP.
    Gernaey KV; Nielsen MK; Thornberg D; Höök B; Munk-Nielsen T; Ingildsen P; Jørgensen SB
    Water Sci Technol; 2004; 50(11):179-88. PubMed ID: 15685994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation of storage tanks on the COST 624 benchmark.
    Pons MN; Corriou JP
    Water Sci Technol; 2002; 45(4-5):159-66. PubMed ID: 11936629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marrying Step Feed with Secondary Clarifier Improvements to Significantly Increase Peak Wet Weather Treatment Capacity: An Integrated Methodology.
    Daigger GT; Siczka JS; Smith TF; Frank DA; McCorquodale JA
    Water Environ Res; 2017 Aug; 89(8):724-731. PubMed ID: 28332469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grey-box modelling of aeration tank settling.
    Bechman H; Nielsen MK; Poulsen NK; Madsen H
    Water Res; 2002 Apr; 36(7):1887-95. PubMed ID: 12044088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimisation potential for a SBR plant based upon integrated modelling for dry and wet weather conditions.
    Rönner-Holm SG; Kaufmann Alves I; Steinmetz H; Holm NC
    Water Sci Technol; 2009; 60(8):1953-64. PubMed ID: 19844042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line determination of sludge settling velocity for flux-based real-time control of secondary clarifiers.
    Lynggaard-Jensen A; Lading L
    Water Sci Technol; 2006; 54(11-12):249-56. PubMed ID: 17302327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the potential impact of retention tank emptying on wastewater primary treatment: a new element for CSO management.
    Maruejouls T; Lessard P; Wipliez B; Pelletier G; Vanrolleghem PA
    Water Sci Technol; 2011; 64(9):1898-905. PubMed ID: 22020485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of alkylphenols and polybromodiphenylethers by a biofiltration treatment plant during dry and wet-weather periods.
    Gilbert S; Gasperi J; Rocher V; Lorgeoux C; Chebbo G
    Water Sci Technol; 2012; 65(9):1591-8. PubMed ID: 22508121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RTC simulations on large branched sewer systems with SmaRTControl.
    de Korte K; van Beest D; van der Plaat M; de Graaf E; Schaart N
    Water Sci Technol; 2009; 60(2):475-82. PubMed ID: 19633390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SHARON process evaluated for improved wastewater treatment plant nitrogen effluent quality.
    van Kempen R; ten Have CC; Meijer SC; Mulder JW; Duin JO; Uijterlinde CA; van Loosdrecht MC
    Water Sci Technol; 2005; 52(4):55-62. PubMed ID: 16235746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.
    Ramin E; Sin G; Mikkelsen PS; Plósz BG
    Water Res; 2014 Oct; 63():209-21. PubMed ID: 25003213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.
    Mouri G; Oki T
    Water Sci Technol; 2010; 62(10):2346-56. PubMed ID: 21076221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydraulic fractionation of conventional water quality constituents in municipal dry- and wet-weather flow samples.
    Exall K; Marsalek J; Krishnappan BG
    Water Sci Technol; 2009; 59(6):1159-67. PubMed ID: 19342812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seine Centre, the new flexible Colombes sewage treatment plant--from theory to practice.
    Paffoni C
    Water Sci Technol; 2001; 44(2-3):49-56. PubMed ID: 11548020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pollution based real time control of wastewater systems.
    Risholt LP; Schilling W; Erbe V; Alex J
    Water Sci Technol; 2002; 45(3):219-28. PubMed ID: 11902473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Project CARE: reducing wet weather overflows to improve beach water quality. Council Action in Respect of the Environment.
    Heijs J; Wilkinson D; Couriel E
    Water Sci Technol; 2002; 46(6-7):35-46. PubMed ID: 12380972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct precipitation on demand at large Scandinavian WWTPs reduces the effluent phosphorus load.
    Mattsson A; Nivert G; Heinonen M
    Water Sci Technol; 2012; 65(12):2106-11. PubMed ID: 22643403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new concept for storm water treatment: full-scale experience in Flanders.
    Carrette R; Thoeye C; Ockier P
    Water Sci Technol; 2001; 44(1):195-9. PubMed ID: 11496673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.