These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 23676665)

  • 21. Osm1 facilitates the transfer of electrons from Erv1 to fumarate in the redox-regulated import pathway in the mitochondrial intermembrane space.
    Neal SE; Dabir DV; Wijaya J; Boon C; Koehler CM
    Mol Biol Cell; 2017 Oct; 28(21):2773-2785. PubMed ID: 28814504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mia40-dependent oxidation of cysteines in domain I of Ccs1 controls its distribution between mitochondria and the cytosol.
    Klöppel C; Suzuki Y; Kojer K; Petrungaro C; Longen S; Fiedler S; Keller S; Riemer J
    Mol Biol Cell; 2011 Oct; 22(20):3749-57. PubMed ID: 21865594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A disulfide relay system in the intermembrane space of mitochondria that mediates protein import.
    Mesecke N; Terziyska N; Kozany C; Baumann F; Neupert W; Hell K; Herrmann JM
    Cell; 2005 Jul; 121(7):1059-69. PubMed ID: 15989955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The disulfide relay of the intermembrane space oxidizes the ribosomal subunit mrp10 on its transit into the mitochondrial matrix.
    Longen S; Woellhaf MW; Petrungaro C; Riemer J; Herrmann JM
    Dev Cell; 2014 Jan; 28(1):30-42. PubMed ID: 24360785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distinctive biochemistry in the trypanosome mitochondrial intermembrane space suggests a model for stepwise evolution of the MIA pathway for import of cysteine-rich proteins.
    Allen JW; Ferguson SJ; Ginger ML
    FEBS Lett; 2008 Aug; 582(19):2817-25. PubMed ID: 18639549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the Mitochondrial Intermembrane Space Disulfide Relay Represents a Critical Step in Eukaryotic Evolution.
    Backes S; Garg SG; Becker L; Peleh V; Glockshuber R; Gould SB; Herrmann JM
    Mol Biol Evol; 2019 Apr; 36(4):742-756. PubMed ID: 30668797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural basis for the disulfide relay system in the mitochondrial intermembrane space.
    Endo T; Yamano K; Kawano S
    Antioxid Redox Signal; 2010 Nov; 13(9):1359-73. PubMed ID: 20136511
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein oxidative folding in the intermembrane mitochondrial space: more than protein trafficking.
    Fraga H; Ventura S
    Curr Protein Pept Sci; 2012 May; 13(3):224-31. PubMed ID: 22612783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of twin Cys-Xaa9-Cys motif cysteines in mitochondrial import of the cytochrome C oxidase biogenesis factor Cmc1.
    Bourens M; Dabir DV; Tienson HL; Sorokina I; Koehler CM; Barrientos A
    J Biol Chem; 2012 Sep; 287(37):31258-69. PubMed ID: 22767599
    [TBL] [Abstract][Full Text] [Related]  

  • 30.
    Turra GL; Liedgens L; Sommer F; Schneider L; Zimmer D; Vilurbina Perez J; Koncarevic S; Schroda M; Mühlhaus T; Deponte M
    Microbiol Spectr; 2021 Oct; 9(2):e0080921. PubMed ID: 34585988
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An electron-transfer path through an extended disulfide relay system: the case of the redox protein ALR.
    Banci L; Bertini I; Calderone V; Cefaro C; Ciofi-Baffoni S; Gallo A; Tokatlidis K
    J Am Chem Soc; 2012 Jan; 134(3):1442-5. PubMed ID: 22224850
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidative protein folding in the mitochondrial intermembrane space.
    Sideris DP; Tokatlidis K
    Antioxid Redox Signal; 2010 Oct; 13(8):1189-204. PubMed ID: 20214493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c.
    Allen S; Balabanidou V; Sideris DP; Lisowsky T; Tokatlidis K
    J Mol Biol; 2005 Nov; 353(5):937-44. PubMed ID: 16185707
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mitochondrial oxidoreductase CHCHD4 is present in a semi-oxidized state in vivo.
    Erdogan AJ; Ali M; Habich M; Salscheider SL; Schu L; Petrungaro C; Thomas LW; Ashcroft M; Leichert LI; Roma LP; Riemer J
    Redox Biol; 2018 Jul; 17():200-206. PubMed ID: 29704824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstitution of the mia40-erv1 oxidative folding pathway for the small tim proteins.
    Tienson HL; Dabir DV; Neal SE; Loo R; Hasson SA; Boontheung P; Kim SK; Loo JA; Koehler CM
    Mol Biol Cell; 2009 Aug; 20(15):3481-90. PubMed ID: 19477928
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo evidence for cooperation of Mia40 and Erv1 in the oxidation of mitochondrial proteins.
    Böttinger L; Gornicka A; Czerwik T; Bragoszewski P; Loniewska-Lwowska A; Schulze-Specking A; Truscott KN; Guiard B; Milenkovic D; Chacinska A
    Mol Biol Cell; 2012 Oct; 23(20):3957-69. PubMed ID: 22918950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mia40 combines thiol oxidase and disulfide isomerase activity to efficiently catalyze oxidative folding in mitochondria.
    Koch JR; Schmid FX
    J Mol Biol; 2014 Dec; 426(24):4087-4098. PubMed ID: 25451030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The N-terminal shuttle domain of Erv1 determines the affinity for Mia40 and mediates electron transfer to the catalytic Erv1 core in yeast mitochondria.
    Lionaki E; Aivaliotis M; Pozidis C; Tokatlidis K
    Antioxid Redox Signal; 2010 Nov; 13(9):1327-39. PubMed ID: 20367271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic characterisation of Erv1, a key component for protein import and folding in yeast mitochondria.
    Tang X; Ang SK; Ceh-Pavia E; Heyes DJ; Lu H
    FEBS J; 2020 Mar; 287(6):1220-1231. PubMed ID: 31569302
    [TBL] [Abstract][Full Text] [Related]  

  • 40. AIFM1 is a component of the mitochondrial disulfide relay that drives complex I assembly through efficient import of NDUFS5.
    Salscheider SL; Gerlich S; Cabrera-Orefice A; Peker E; Rothemann RA; Murschall LM; Finger Y; Szczepanowska K; Ahmadi ZA; Guerrero-Castillo S; Erdogan A; Becker M; Ali M; Habich M; Petrungaro C; Burdina N; Schwarz G; Klußmann M; Neundorf I; Stroud DA; Ryan MT; Trifunovic A; Brandt U; Riemer J
    EMBO J; 2022 Sep; 41(17):e110784. PubMed ID: 35859387
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.