These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 23676678)

  • 1. Cloning of Dirac fermions in graphene superlattices.
    Ponomarenko LA; Gorbachev RV; Yu GL; Elias DC; Jalil R; Patel AA; Mishchenko A; Mayorov AS; Woods CR; Wallbank JR; Mucha-Kruczynski M; Piot BA; Potemski M; Grigorieva IV; Novoselov KS; Guinea F; Fal'ko VI; Geim AK
    Nature; 2013 May; 497(7451):594-7. PubMed ID: 23676678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixing of moiré-surface and bulk states in graphite.
    Mullan C; Slizovskiy S; Yin J; Wang Z; Yang Q; Xu S; Yang Y; Piot BA; Hu S; Taniguchi T; Watanabe K; Novoselov KS; Geim AK; Fal'ko VI; Mishchenko A
    Nature; 2023 Aug; 620(7975):756-761. PubMed ID: 37468634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Carrier Transport in Graphene/hBN Superlattices.
    Iwasaki T; Nakaharai S; Wakayama Y; Watanabe K; Taniguchi T; Morita Y; Moriyama S
    Nano Lett; 2020 Apr; 20(4):2551-2557. PubMed ID: 32186384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of Tertiary Dirac Points in Graphene Moiré Superlattices.
    Chen G; Sui M; Wang D; Wang S; Jung J; Moon P; Adam S; Watanabe K; Taniguchi T; Zhou S; Koshino M; Zhang G; Zhang Y
    Nano Lett; 2017 Jun; 17(6):3576-3581. PubMed ID: 28475836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological Winding Number Change and Broken Inversion Symmetry in a Hofstadter's Butterfly.
    Wang P; Cheng B; Martynov O; Miao T; Jing L; Taniguchi T; Watanabe K; Aji V; Lau CN; Bockrath M
    Nano Lett; 2015 Oct; 15(10):6395-9. PubMed ID: 26401645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure.
    Hunt B; Sanchez-Yamagishi JD; Young AF; Yankowitz M; LeRoy BJ; Watanabe K; Taniguchi T; Moon P; Koshino M; Jarillo-Herrero P; Ashoori RC
    Science; 2013 Jun; 340(6139):1427-30. PubMed ID: 23686343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hofstadter's butterfly and the fractal quantum Hall effect in moiré superlattices.
    Dean CR; Wang L; Maher P; Forsythe C; Ghahari F; Gao Y; Katoch J; Ishigami M; Moon P; Koshino M; Taniguchi T; Watanabe K; Shepard KL; Hone J; Kim P
    Nature; 2013 May; 497(7451):598-602. PubMed ID: 23676673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-range ballistic transport of Brown-Zak fermions in graphene superlattices.
    Barrier J; Kumaravadivel P; Krishna Kumar R; Ponomarenko LA; Xin N; Holwill M; Mullan C; Kim M; Gorbachev RV; Thompson MD; Prance JR; Taniguchi T; Watanabe K; Grigorieva IV; Novoselov KS; Mishchenko A; Fal'ko VI; Geim AK; Berdyugin AI
    Nat Commun; 2020 Nov; 11(1):5756. PubMed ID: 33188210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergence of massless Dirac fermions in graphene's Hofstadter butterfly at switches of the quantum Hall phase connectivity.
    Diez M; Dahlhaus JP; Wimmer M; Beenakker CW
    Phys Rev Lett; 2014 May; 112(19):196602. PubMed ID: 24877956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge transport through one-dimensional Moiré crystals.
    Bonnet R; Lherbier A; Barraud C; Della Rocca ML; Lafarge P; Charlier JC
    Sci Rep; 2016 Jan; 6():19701. PubMed ID: 26786067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman fingerprint of aligned graphene/h-BN superlattices.
    Eckmann A; Park J; Yang H; Elias D; Mayorov AS; Yu G; Jalil R; Novoselov KS; Gorbachev RV; Lazzeri M; Geim AK; Casiraghi C
    Nano Lett; 2013 Nov; 13(11):5242-6. PubMed ID: 24156357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmons in graphene moiré superlattices.
    Ni GX; Wang H; Wu JS; Fei Z; Goldflam MD; Keilmann F; Özyilmaz B; Castro Neto AH; Xie XM; Fogler MM; Basov DN
    Nat Mater; 2015 Dec; 14(12):1217-22. PubMed ID: 26413987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kagome Quantum Oscillations in Graphene Superlattices.
    de Vries FK; Slizovskiy S; Tomić P; Krishna Kumar R; Garcia-Ruiz A; Zheng G; Portolés E; Ponomarenko LA; Geim AK; Watanabe K; Taniguchi T; Fal'ko V; Ensslin K; Ihn T; Rickhaus P
    Nano Lett; 2024 Jan; 24(2):601-606. PubMed ID: 38180909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of moiré excitons in WSe
    Jin C; Regan EC; Yan A; Iqbal Bakti Utama M; Wang D; Zhao S; Qin Y; Yang S; Zheng Z; Shi S; Watanabe K; Taniguchi T; Tongay S; Zettl A; Wang F
    Nature; 2019 Mar; 567(7746):76-80. PubMed ID: 30804525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Band conductivity oscillations in a gate-tunable graphene superlattice.
    Huber R; Steffen MN; Drienovsky M; Sandner A; Watanabe K; Taniguchi T; Pfannkuche D; Weiss D; Eroms J
    Nat Commun; 2022 May; 13(1):2856. PubMed ID: 35606355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Generation of Moiré Superlattices in Doubly Aligned hBN/Graphene/hBN Heterostructures.
    Wang L; Zihlmann S; Liu MH; Makk P; Watanabe K; Taniguchi T; Baumgartner A; Schönenberger C
    Nano Lett; 2019 Apr; 19(4):2371-2376. PubMed ID: 30803238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging Bulk and Edge Transport near the Dirac Point in Graphene Moiré Superlattices.
    Dou Z; Morikawa S; Cresti A; Wang SW; Smith CG; Melios C; Kazakova O; Watanabe K; Taniguchi T; Masubuchi S; Machida T; Connolly MR
    Nano Lett; 2018 Apr; 18(4):2530-2537. PubMed ID: 29529371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A primer on twistronics: a massless Dirac fermion's journey to moiré patterns and flat bands in twisted bilayer graphene.
    Aggarwal D; Narula R; Ghosh S
    J Phys Condens Matter; 2023 Feb; 35(14):. PubMed ID: 36745922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gate-Tunable Two-Dimensional Superlattices in Graphene.
    Huber R; Liu MH; Chen SC; Drienovsky M; Sandner A; Watanabe K; Taniguchi T; Richter K; Weiss D; Eroms J
    Nano Lett; 2020 Nov; 20(11):8046-8052. PubMed ID: 33054236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanophysics in graphene: neutrino physics in quantum rings and superlattices.
    Fertig HA; Brey L
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5483-97. PubMed ID: 21041226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.