These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23676762)

  • 21. Differentiating antimicrobial peptides interacting with lipid bilayer: Molecular signatures derived from quartz crystal microbalance with dissipation monitoring.
    Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015 Jan; 196():53-67. PubMed ID: 25307196
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles.
    Wang G
    J Biol Chem; 2008 Nov; 283(47):32637-43. PubMed ID: 18818205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure analysis of the membrane-bound dermcidin-derived peptide SSL-25 from human sweat.
    Mühlhäuser P; Wadhwani P; Strandberg E; Bürck J; Ulrich AS
    Biochim Biophys Acta Biomembr; 2017 Dec; 1859(12):2308-2318. PubMed ID: 28888369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detergent-type membrane fragmentation by MSI-78, MSI-367, MSI-594, and MSI-843 antimicrobial peptides and inhibition by cholesterol: a solid-state nuclear magnetic resonance study.
    Lee DK; Bhunia A; Kotler SA; Ramamoorthy A
    Biochemistry; 2015 Mar; 54(10):1897-907. PubMed ID: 25715195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterisation of cell membrane interaction mechanisms of antimicrobial peptides by electrical bilayer recording.
    Priyadarshini D; Ivica J; Separovic F; de Planque MRR
    Biophys Chem; 2022 Feb; 281():106721. PubMed ID: 34808479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy.
    Shaw JE; Epand RF; Hsu JC; Mo GC; Epand RM; Yip CM
    J Struct Biol; 2008 Apr; 162(1):121-38. PubMed ID: 18180166
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical screening of anti-microbial peptide LL-37 interaction with phospholipids.
    Neville F; Gidalevitz D; Kale G; Nelson A
    Bioelectrochemistry; 2007 May; 70(2):205-13. PubMed ID: 16949887
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and mechanism of beta-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy.
    Tang M; Hong M
    Mol Biosyst; 2009 Apr; 5(4):317-22. PubMed ID: 19396367
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ²H solid-state nuclear magnetic resonance investigation of whole Escherichia coli interacting with antimicrobial peptide MSI-78.
    Pius J; Morrow MR; Booth V
    Biochemistry; 2012 Jan; 51(1):118-25. PubMed ID: 22126434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular insights into the interactions of GF-17 with the gram-negative and gram-positive bacterial lipid bilayers.
    Jahangiri S; Jafari M; Arjomand M; Mehrnejad F
    J Cell Biochem; 2018 Nov; 119(11):9205-9216. PubMed ID: 30076752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Membrane interactions and dynamics of a 21-mer cytotoxic peptide: a solid-state NMR study.
    Ouellet M; Voyer N; Auger M
    Biochim Biophys Acta; 2010 Feb; 1798(2):235-43. PubMed ID: 19703408
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions of GF-17 derived from LL-37 antimicrobial peptide with bacterial membranes: a molecular dynamics simulation study.
    Aghazadeh H; Ganjali Koli M; Ranjbar R; Pooshang Bagheri K
    J Comput Aided Mol Des; 2020 Dec; 34(12):1261-1273. PubMed ID: 33009624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence of pores and thinned lipid bilayers induced in oriented lipid membranes interacting with the antimicrobial peptides, magainin-2 and aurein-3.3.
    Kim C; Spano J; Park EK; Wi S
    Biochim Biophys Acta; 2009 Jul; 1788(7):1482-96. PubMed ID: 19409370
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Model membrane interaction and DNA-binding of antimicrobial peptide Lasioglossin II derived from bee venom.
    Bandyopadhyay S; Lee M; Sivaraman J; Chatterjee C
    Biochem Biophys Res Commun; 2013 Jan; 430(1):1-6. PubMed ID: 23159628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular interactions between cell penetrating peptide Pep-1 and model cell membranes.
    Ding B; Chen Z
    J Phys Chem B; 2012 Mar; 116(8):2545-52. PubMed ID: 22292835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding of LL-37 to model biomembranes: insight into target vs host cell recognition.
    Sood R; Domanov Y; Pietiäinen M; Kontinen VP; Kinnunen PK
    Biochim Biophys Acta; 2008 Apr; 1778(4):983-96. PubMed ID: 18166145
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes?
    McHenry AJ; Sciacca MF; Brender JR; Ramamoorthy A
    Biochim Biophys Acta; 2012 Dec; 1818(12):3019-24. PubMed ID: 22885355
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High resolution heteronuclear correlation NMR spectroscopy of an antimicrobial peptide in aligned lipid bilayers: peptide-water interactions at the water-bilayer interface.
    Fu R; Gordon ED; Hibbard DJ; Cotten M
    J Am Chem Soc; 2009 Aug; 131(31):10830-1. PubMed ID: 19621928
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms of peptide-induced pore formation in lipid bilayers investigated by oriented 31P solid-state NMR spectroscopy.
    Bertelsen K; Dorosz J; Hansen SK; Nielsen NC; Vosegaard T
    PLoS One; 2012; 7(10):e47745. PubMed ID: 23094079
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the mechanism of action of novel amphipathic peptides: insights from solid-state NMR studies of oriented lipid bilayers.
    Fillion M; Noël M; Lorin A; Voyer N; Auger M
    Biochim Biophys Acta; 2014 Sep; 1838(9):2173-9. PubMed ID: 24508758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.