BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 23676768)

  • 1. Patterns of Epistasis between beneficial mutations in an antibiotic resistance gene.
    Schenk MF; Szendro IG; Salverda ML; Krug J; de Visser JA
    Mol Biol Evol; 2013 Aug; 30(8):1779-87. PubMed ID: 23676768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unraveling the causes of adaptive benefits of synonymous mutations in TEM-1 β-lactamase.
    Zwart MP; Schenk MF; Hwang S; Koopmanschap B; de Lange N; van de Pol L; Nga TTT; Szendro IG; Krug J; de Visser JAGM
    Heredity (Edinb); 2018 Nov; 121(5):406-421. PubMed ID: 29967397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictable properties of fitness landscapes induced by adaptational tradeoffs.
    Das SG; Direito SO; Waclaw B; Allen RJ; Krug J
    Elife; 2020 May; 9():. PubMed ID: 32423531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pervasive Pairwise Intragenic Epistasis among Sequential Mutations in TEM-1 β-Lactamase.
    Gonzalez CE; Ostermeier M
    J Mol Biol; 2019 May; 431(10):1981-1992. PubMed ID: 30922874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diminishing returns from beneficial mutations and pervasive epistasis shape the fitness landscape for rifampicin resistance in Pseudomonas aeruginosa.
    MacLean RC; Perron GG; Gardner A
    Genetics; 2010 Dec; 186(4):1345-54. PubMed ID: 20876562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and
    Standley M; Blay V; Beleva Guthrie V; Kim J; Lyman A; Moya A; Karchin R; Camps M
    ACS Infect Dis; 2022 Dec; 8(12):2451-2463. PubMed ID: 36377311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme Efficiency but Not Thermostability Drives Cefotaxime Resistance Evolution in TEM-1 β-Lactamase.
    Knies JL; Cai F; Weinreich DM
    Mol Biol Evol; 2017 May; 34(5):1040-1054. PubMed ID: 28087769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network models of TEM β-lactamase mutations coevolving under antibiotic selection show modular structure and anticipate evolutionary trajectories.
    Guthrie VB; Allen J; Camps M; Karchin R
    PLoS Comput Biol; 2011 Sep; 7(9):e1002184. PubMed ID: 21966264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifting Fitness and Epistatic Landscapes Reflect Trade-offs along an Evolutionary Pathway.
    Steinberg B; Ostermeier M
    J Mol Biol; 2016 Jul; 428(13):2730-43. PubMed ID: 27173379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Initial mutations direct alternative pathways of protein evolution.
    Salverda ML; Dellus E; Gorter FA; Debets AJ; van der Oost J; Hoekstra RF; Tawfik DS; de Visser JA
    PLoS Genet; 2011 Mar; 7(3):e1001321. PubMed ID: 21408208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The environment affects epistatic interactions to alter the topology of an empirical fitness landscape.
    Flynn KM; Cooper TF; Moore FB; Cooper VS
    PLoS Genet; 2013 Apr; 9(4):e1003426. PubMed ID: 23593024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Negative epistasis between beneficial mutations in an evolving bacterial population.
    Khan AI; Dinh DM; Schneider D; Lenski RE; Cooper TF
    Science; 2011 Jun; 332(6034):1193-6. PubMed ID: 21636772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Darwinian evolution can follow only very few mutational paths to fitter proteins.
    Weinreich DM; Delaney NF; Depristo MA; Hartl DL
    Science; 2006 Apr; 312(5770):111-4. PubMed ID: 16601193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tortoise-hare pattern seen in adapting structured and unstructured populations suggests a rugged fitness landscape in bacteria.
    Nahum JR; Godfrey-Smith P; Harding BN; Marcus JH; Carlson-Stevermer J; Kerr B
    Proc Natl Acad Sci U S A; 2015 Jun; 112(24):7530-5. PubMed ID: 25964348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epistatic interactions determine the mutational pathways and coexistence of lineages in clonal Escherichia coli populations.
    Maharjan RP; Ferenci T
    Evolution; 2013 Sep; 67(9):2762-8. PubMed ID: 24033182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Choice of β-Lactam Resistance Pathway Depends Critically on Initial Antibiotic Concentration.
    Ruelens P; de Visser JAGM
    Antimicrob Agents Chemother; 2021 Jul; 65(8):e0047121. PubMed ID: 33972257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive Phenotypes Underlie Epistasis of Fitness Effects.
    Sackman AM; Rokyta DR
    Genetics; 2018 Jan; 208(1):339-348. PubMed ID: 29113978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Fitness of Beta-Lactamase Mutants Depends Nonlinearly on Resistance Level at Sublethal Antibiotic Concentrations.
    Farr AD; Pesce D; Das SG; Zwart MP; de Visser JAGM
    mBio; 2023 Jun; 14(3):e0009823. PubMed ID: 37129484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predictable Phenotypes of Antibiotic Resistance Mutations.
    Knopp M; Andersson DI
    mBio; 2018 May; 9(3):. PubMed ID: 29764951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying the adaptive potential of an antibiotic resistance enzyme.
    Schenk MF; Szendro IG; Krug J; de Visser JA
    PLoS Genet; 2012 Jun; 8(6):e1002783. PubMed ID: 22761587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.