These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 23676904)

  • 1. Engineering the cellular protein secretory pathway for enhancement of recombinant tissue plasminogen activator expression in Chinese hamster ovary cells: effects of CERT and XBP1s genes.
    Rahimpour A; Vaziri B; Moazzami R; Nematollahi L; Barkhordari F; Kokabee L; Adeli A; Mahboudi F
    J Microbiol Biotechnol; 2013 Aug; 23(8):1116-22. PubMed ID: 23676904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Genetically Modified Chinese Hamster Ovary Host Cells for the Enhancement of Recombinant Tissue Plasminogen Activator Expression.
    Rahimpour A; Ahani R; Najaei A; Adeli A; Barkhordari F; Mahboudi F
    Malays J Med Sci; 2016 Mar; 23(2):6-13. PubMed ID: 27547109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous expression of the lipid transfer protein CERT increases therapeutic protein productivity of mammalian cells.
    Florin L; Pegel A; Becker E; Hausser A; Olayioye MA; Kaufmann H
    J Biotechnol; 2009 Apr; 141(1-2):84-90. PubMed ID: 19428735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells.
    Ku SC; Ng DT; Yap MG; Chao SH
    Biotechnol Bioeng; 2008 Jan; 99(1):155-64. PubMed ID: 17614336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of intracellular IgG secretion in Chinese hamster ovary cells to improve IgG production.
    Kaneyoshi K; Uchiyama K; Onitsuka M; Yamano N; Koga Y; Omasa T
    J Biosci Bioeng; 2019 Jan; 127(1):107-113. PubMed ID: 30017708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells.
    Tigges M; Fussenegger M
    Metab Eng; 2006 May; 8(3):264-72. PubMed ID: 16635796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells.
    Pybus LP; Dean G; West NR; Smith A; Daramola O; Field R; Wilkinson SJ; James DC
    Biotechnol Bioeng; 2014 Feb; 111(2):372-85. PubMed ID: 24081924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Temperature Downshift on the Transcriptomic Responses of Chinese Hamster Ovary Cells Using Recombinant Human Tissue Plasminogen Activator Production Culture.
    Bedoya-López A; Estrada K; Sanchez-Flores A; Ramírez OT; Altamirano C; Segovia L; Miranda-Ríos J; Trujillo-Roldán MA; Valdez-Cruz NA
    PLoS One; 2016; 11(3):e0151529. PubMed ID: 26991106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of Chinese hamster ovary cell lipid metabolism results in an expanded ER and enhanced recombinant biotherapeutic protein production.
    Budge JD; Knight TJ; Povey J; Roobol J; Brown IR; Singh G; Dean A; Turner S; Jaques CM; Young RJ; Racher AJ; Smales CM
    Metab Eng; 2020 Jan; 57():203-216. PubMed ID: 31805379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering of Chinese hamster ovary cells for co-overexpressing MYC and XBP1s increased cell proliferation and recombinant EPO production.
    Latorre Y; Torres M; Vergara M; Berrios J; Sampayo MM; Gödecke N; Wirth D; Hauser H; Dickson AJ; Altamirano C
    Sci Rep; 2023 Jan; 13(1):1482. PubMed ID: 36707606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-glycosylation and in vitro enzymatic activity of human recombinant tissue plasminogen activator expressed in Chinese hamster ovary cells and a murine cell line.
    Parekh RB; Dwek RA; Rudd PM; Thomas JR; Rademacher TW; Warren T; Wun TC; Hebert B; Reitz B; Palmier M
    Biochemistry; 1989 Sep; 28(19):7670-9. PubMed ID: 2514793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression.
    Lin N; Mascarenhas J; Sealover NR; George HJ; Brooks J; Kayser KJ; Gau B; Yasa I; Azadi P; Archer-Hartmann S
    Biotechnol Prog; 2015; 31(2):334-46. PubMed ID: 25641927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system.
    Zhou H; Liu ZG; Sun ZW; Huang Y; Yu WY
    J Biotechnol; 2010 May; 147(2):122-9. PubMed ID: 20371256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mild hypothermia upregulates myc and xbp1s expression and improves anti-TNFα production in CHO cells.
    Torres M; Zúñiga R; Gutierrez M; Vergara M; Collazo N; Reyes J; Berrios J; Aguillon JC; Molina MC; Altamirano C
    PLoS One; 2018; 13(3):e0194510. PubMed ID: 29566086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of glutamine-dependent autophagy increases t-PA production in CHO cell fed-batch processes.
    Jardon MA; Sattha B; Braasch K; Leung AO; Côté HC; Butler M; Gorski SM; Piret JM
    Biotechnol Bioeng; 2012 May; 109(5):1228-38. PubMed ID: 22125188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secretory pathway optimization of CHO producer cells by co-engineering of the mitosRNA-1978 target genes CerS2 and Tbc1D20.
    Pieper LA; Strotbek M; Wenger T; Gamer M; Olayioye MA; Hausser A
    Metab Eng; 2017 Mar; 40():69-79. PubMed ID: 28088541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endoplasmic Reticulum-Associated rht-PA Processing in CHO Cells: Influence of Mild Hypothermia and Specific Growth Rates in Batch and Chemostat Cultures.
    Vergara M; Berrios J; Martínez I; Díaz-Barrera A; Acevedo C; Reyes JG; Gonzalez R; Altamirano C
    PLoS One; 2015; 10(12):e0144224. PubMed ID: 26659083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The position of the structurally autonomous kringle 2 domain influences the functional features of tissue-type plasminogen activator.
    Bakker AH; Rehberg EF; Marotti KR; Verheijen JH
    Protein Eng; 1995 Mar; 8(3):293-300. PubMed ID: 7479691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel variant of t-PA resistant to plasminogen activator inhibitor-1; expression in CHO cells based on in silico experiments.
    Davami F; Sardari S; Majidzadeh-A K; Hemayatkar M; Barkhordari F; Enayati S; Adeli A; Mahboudi F
    BMB Rep; 2011 Jan; 44(1):34-9. PubMed ID: 21266104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of cell culture conditions to control N-glycosylation site-occupancy of recombinant glycoproteins expressed in CHO cells.
    Gawlitzek M; Estacio M; Fürch T; Kiss R
    Biotechnol Bioeng; 2009 Aug; 103(6):1164-75. PubMed ID: 19418565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.