BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 23676914)

  • 21. Effect of high hydrostatic pressure on mycelial development, spore viability and enzyme activity of Penicillium Roqueforti.
    Martínez-Rodríguez Y; Acosta-Muñiz C; Olivas GI; Guerrero-Beltrán J; Rodrigo-Aliaga D; Mujica-Paz H; Welti-Chanes J; Sepulveda DR
    Int J Food Microbiol; 2014 Jan; 168-169():42-6. PubMed ID: 24239974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Infectivity of microsporidian spores exposed to temperature extremes and chemical disinfectants.
    Li X; Fayer R
    J Eukaryot Microbiol; 2006; 53 Suppl 1():S77-9. PubMed ID: 17169075
    [No Abstract]   [Full Text] [Related]  

  • 23. Evaluation of CO2-based cold sterilization of a model hydrogel.
    Jiménez A; Zhang J; Matthews MA
    Biotechnol Bioeng; 2008 Dec; 101(6):1344-52. PubMed ID: 18571803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of fungal conidia impacts their susceptibility to inactivation by ethanol vapours.
    Dao T; Dantigny P
    Int J Food Microbiol; 2009 Nov; 135(3):268-73. PubMed ID: 19762103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the inactivation of Escherichia coli O157:H7 and generic Escherichia coli by supercritical carbon dioxide.
    Kim SR; Rhee MS; Kim BC; Kim KH
    Int J Food Microbiol; 2007 Aug; 118(1):52-61. PubMed ID: 17604865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of the inactivation of Salmonella typhimurium by supercritical carbon dioxide in physiological saline and phosphate-buffered saline.
    Kim SR; Rhee MS; Kim BC; Lee H; Kim KH
    J Microbiol Methods; 2007 Jul; 70(1):132-41. PubMed ID: 17509706
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of the Weibull model to describe inactivation of dry-harvested conidia of different Penicillium species by ethanol vapours.
    Dao T; Dejardin J; Bensoussan M; Dantigny P
    J Appl Microbiol; 2010 Aug; 109(2):408-414. PubMed ID: 20070448
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of Escherichia coli inoculated into cloudy apple juice exposed to dense phase carbon dioxide.
    Liao H; Hu X; Liao X; Chen F; Wu J
    Int J Food Microbiol; 2007 Sep; 118(2):126-31. PubMed ID: 17689768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accelerated death kinetics of Aspergillus niger spores under high-pressure carbonation.
    Shimoda M; Kago H; Kojima N; Miyake M; Osajima Y; Hayakawa I
    Appl Environ Microbiol; 2002 Aug; 68(8):4162-7. PubMed ID: 12147527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature.
    Spilimbergo S; Dehghani F; Bertucco A; Foster NR
    Biotechnol Bioeng; 2003 Apr; 82(1):118-25. PubMed ID: 12569631
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High gas pressure: an innovative method for the inactivation of dried bacterial spores.
    Colas de la Noue A; Espinasse V; Perrier-Cornet JM; Gervais P
    Biotechnol Bioeng; 2012 Aug; 109(8):1996-2004. PubMed ID: 22362566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Continuous flow nonthermal CO2 processing: the lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk.
    Werner BG; Hotchkiss JH
    J Dairy Sci; 2006 Mar; 89(3):872-81. PubMed ID: 16507680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Susceptibility of food-contaminating Penicillium genus fungi to some preservatives and disinfectants.
    Levinskaite L
    Ann Agric Environ Med; 2012; 19(1):85-9. PubMed ID: 22462451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Survival of nosocomial bacteria and spores on surfaces and inactivation by hydrogen peroxide vapor.
    Otter JA; French GL
    J Clin Microbiol; 2009 Jan; 47(1):205-7. PubMed ID: 18971364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of supercritical carbon dioxide treatment for the inactivation of the natural microbial flora in cubed cooked ham.
    Ferrentino G; Balzan S; Spilimbergo S
    Int J Food Microbiol; 2013 Feb; 161(3):189-96. PubMed ID: 23334097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supercritical carbon dioxide technology in food processing: Insightful comprehension of the mechanisms of microbial inactivation and impacts on quality and safety aspects.
    Veiga GCD; Mafaldo ÍM; Barão CE; Baú TR; Magnani M; Pimentel TC
    Compr Rev Food Sci Food Saf; 2024 May; 23(3):e13345. PubMed ID: 38638070
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inactivation of Bacillus cereus spores in milk by mild pressure and heat treatments.
    Van Opstal I; Bagamboula CF; Vanmuysen SC; Wuytack EY; Michiels CW
    Int J Food Microbiol; 2004 Apr; 92(2):227-34. PubMed ID: 15109800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant.
    Qiu QQ; Leamy P; Brittingham J; Pomerleau J; Kabaria N; Connor J
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):572-578. PubMed ID: 19582844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of survival rates and cellular fatty acid profiles of Listeria monocytogenes treated with supercritical carbon dioxide under the influence of cosolvents.
    Kim SR; Park HJ; Yim do S; Kim HT; Choi IG; Kim KH
    J Microbiol Methods; 2008 Sep; 75(1):47-54. PubMed ID: 18565606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of Inactivation of Dry Escherichia coli by High-Pressure Carbon Dioxide.
    Chen YY; Temelli F; Gänzle MG
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28283526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.